
HarpoonProject Compiler IntermediateRepresentation

C. Scott Ananian

October12,1998
Revision: 1.16

1 Conceptual Overview

The Harpoon project compiler front-end translates
Java bytecode files into a class-oriented intermedi-
aterepresentation which is intended to be easier to
analyzeand manipulate than bytecodeassembly lan-
guage. The intermediate representation is control-
flow-graph structured, with all control flow explicit.
It is also maximally factoredand in static single as-
signment (SSA) form. Internally the intermediate
representation is known as “QuadSSA,” referring to
its derivation from quadruple-style IRs and its SSA
form.

1.1 Quadruples

Unlike expression-tree structured intermediate rep-
resentations, where every operand canoptionally be
theroot of anexpression, quadruple representations
are flat. The “typical” statement is of the form��������� ; thenamequadruple comesfrom thefact
that therearefour components (� , � , � , �) [App98].1

Obviously an IR expressive enough to represent the
entire Java languageneedsmorethan a four compo-
nent operation statement, but we have attempted to
retain theatomicsimplicity of thequadruple form.

1Weuse 	 to stand for an arbitrary binaryoperator.

1.2 Static Single-Assignment Form

Quoting from Appel in [App98]:

Many dataflow analyses needto find the
use-sites of each defined variable, or the
definition-sitesof each variable usedin an
expression. The def-use chain is a data
structurethatmakesthis efficient: for each
statement in the flow graph, the compiler
can keep a list of pointers to all the use
sitesof variablesdefined there, anda list
of pointersto all definition sitesof thevari-
ablesused there. . . .

An improvement on the idea of def-use
chains is static single-assignment form, or
SSA form, an intermediate representation
in which eachvariablehasonly onedefini-
tion in the program text. The one (static)
definition-site may be in a loop that is
executed many (dynamic) times, thus the
namestatic single-assignment form.

An example of the use of SSA form is shown in
figure 1. Simple variable renamingsufficesto trans-
form straight-line code into SSA form. Subscripts
are used to emphasize the relationship of the re-
namedvariablesto theoriginal variables. A benefit
of SSA form which is obvious from the exampleis
thatunrelated usesof thesamevariable in thesource

1

Conventional Static Single Assignment

�
�

�
�
���� ������
������� ����� � ���
����� �"!$#&%'"(�)�����*��!+#&%, � (
��.- �/��.-

�
�

�
�

Figure1: SSA transformation of straight-linecode.

program (
 �

,
 /

) becomedifferent variables in the
SSA form, eliminating falsedependencies.

SSA form becomesmorecomplex whenwe intro-
duce branchesand loops. Figure 2 shows the nec-
essary transformation. You wil l notice theintroduc-
tion of phi functions at locationswhere control flow
merges. The 0 -function “magically” choosesavalue
from among its arguments basedon thecontrol flow
pathusedto reachit. Notethat,although 0 -functions
are impossible to implement directly in an instruc-
tion set (due to their magical properties), they can
be replaced by move instructions along each con-
trol flow edge leading to the 0 -function. Doing so
violates the static single assignment constraints, but
leads to codeexecutable by real processors.

Unless you are implementing code generator
backends, it isunlikely you will needto so replace 0 -
functionsorview themasanythingbut magical 1 -ary
operators. However, it is important to observe and
maintain the ordering relationship between control-
flow edgesand 0 -function arguments during trans-
formation andanalysis.

Analysis, transformation, and optimization of the
IR is simplified by its SSA form. In addition, the
QuadSSA form is maximally factored. Constantsare
not allowedasquadrupleoperands(except for aspe-
cial const operation); which createsauniquemap-
ping from variable namesto valuesin the computa-

Conventional Static SingleAssignment

�
�

�
�
2�.� 3�����
*�2465"7983! 3�:4�5"7;8�!
��<� � �<�

3/�� 0 %'��*=> � (�6������!+#&%,�(� � ��� �"!$#;%' / (

�
�

�
�

Figure2: SSA transformation of branching code.

tion. Thissimplifiesvalueanalysis.
Appel describesseveral other benefitsof the SSA

form in [App98]:

—If a variable has ? usesand @ defini-
tions(which occupyabout ? � @ instruc-
tions in a program), it takesspace (and
time) proportional to ?�A�@ to represent
def-use chains—a quadratic blowup. For
almost all realistic programs, the size of
the SSA form is linear in the size of the
original program.

—Uses and defs of variablesin SSA form
relate in a useful way to the dominator
structure of the control flow graph, which
simplifiesalgorithmssuchasinterference-
graphconstruction.

1.3 Exception handling

Exception handling in the Java language compli-
cates control-flow. Operations (such as division,
possibly by zero) may implicitly throw exceptions
that radically redirect the flow of control. To fa-
cilitate analysis, exception handling and its associ-
ated control-flow is made explicit in the intermedi-
ate representation. For example, null pointer and
array bounds checks are inserted before object and
array references, and division by zero is explicitly

2

checkedbefore every division operation. Theseex-
plicit and comprehensive checks are intendedto be
targetedby aggressive optimizationsdesignedto re-
moved thosecaseswith are redundant, impossible,
or otherwise unnecessary. Thedesign goal of the IR
is thatno statement should throw animplicit excep-
tion underany circumstance. Pursuing that goal in-
volves changing thesemanticsof method invocation
slightly: sothatthecall statement not throw anim-
plicit exception, theIR call hasbeen defined to re-
turn two values. In addition to theconventional (and
optional) method return value, an “exception return
value” is definedto hold the exception thrown by a
method, or null if the method completed without
throwing an exception. Explicit testsof the excep-
tion return value can then be added after thecall
statement, andcontrol-flow madeexplicit aswith the
other IR operations.Thethrow statement in the IR
is thus strippedof its special meaning and becomes
simply analternatereturn statement for theexcep-
tion return value.2

2 Implementation Details

The IR described in these notes is defined in
theJavapackageharpoon.IR.QuadSSA. Source
code and binaries are available at http://

www.magic.lcs.mit.edu/Harpoon.
The QuadSSA statements are called Quads and

aresubclassesof harpoon.IR.QuadSSA.Quad;
they are graph-structured and doubly-linked to
enable both forward and reverse traversal of
the control-flow graph. Edges are represented
by Objects to facilitate associating analysis
data with these control-flow graph edges. The
parent class Quad contains the graph-oriented

2Try, catch, and finally blocks are, of course, taken into
considerationwhen a bytecodeathrow is translatedto an IR
THROW.

methods of the objects. Its superinterface
harpoon.ClassFile.HCodeElement
definesstandard methods to get object ID numbers
and source file information which are valid for
elementsof any intermediaterepresentation.

An enumeration of Quad typesand their uses is
provided in figure 3. It may be observed that the
representation usesboth headerand footer nodes,in
the HEADER and FOOTER classes. HEADER nodes
contain a special link to the FOOTER to allow this
node to be easily identified, and a special subclass
of HEADER, METHODHEADER, provides informa-
tionontheassignment of method arguments to com-
piler temporaryvariablesat thestartof methodcode.

With the exception of CJMP, SWITCH, PHI,
HEADER, METHODHEADER, and FOOTER, all
Quads have exactly one predecessor and one suc-
cessor in thecontrol flow graph.

2.1 Quads

Hereare moredetails on each Quad statement. First
theheaderand footer nodes:

HEADER(B) Start node in the control flow graph
with end node B . Performs no operation. Zero
predecessors,onesuccessor.

METHODHEADER(B , C) Start node in the con-
trol flow graph for a method with parameters
C and end node B . A subclass of HEADER. The
method arguments are loadedinto C+D
�
�
 C9E be-
fore execution starts. Zero predecessors, one
successor.

FOOTER() Final nodein control-flow graph. Per-
forms no operation. All RETURN andTHROW
statements must have the graph’s FOOTER as
their only successor. FOOTER nodesmayhave
any positivenumberof predecessors. They have
nosuccessors.

3

ThefollowingQuads modify thecontrol-flow:

PHI(F , G) Control flow mergesatPHI nodes.A phi
noderepresentsa list of 0 -functionsof theform

F'H � 0 % GIH D = GJHLK
�
M
 GIHON (

where P is the arity of the 0 -function; that is,
the number of predecessors to the node. Any
non-negative number of predecessors, one suc-
cessor.

CJMP(F) Conditional jump based on thebooleanF .
If F is false (0), control flows to thefirst succes-
sor (next[0]). If F is true(1), control flows to
the second successor (next[1]). Oneprede-
cessor, two successors.

SWITCH(F , Q) Indexed jump. Depending on the
value of index variable F and a key list Q , con-
trol is transferred to F �)R3S�T F E where F � Q"E . If
F doesnot match any key in Q , control is trans-
ferred to the default F �)R3S�T F E�U K where Q E is the
last key in thekey list. Onepredecessor, multi-
ple successors.

RETURN(F) Return an optional value F from this
method. One predecessor, one successor. The
single successor should beaFOOTER node.

THROW(F) Throws an exception F as the result of
this method. One predecessor, one successor.
Thesinglesuccessorshould beaFOOTER node.

TheremainingQuadshavenoeffectoncontrol flow,
andhaveexactly onepredecessor andonesuccessor.
No exceptionsare thrown.

AGET(F K , FWV , F'X) Fetches the element at index F,X
fromarray FWV and stores thevalue in F K .

ALENGTH(F K , F,V) Puts the length of array FWV into
variable FYK .

ANEW(F K , � , G) Creates a new uninitialized array
with type � anddimensions GZD
M
�
 GJE , storing a
referencein F K . Thenumberof dimensionssup-
plied in list G maybesmaller thanthenumberof
dimensionsof array classtype � , in which case
only the 1 dimensionsspecifiedin G will becre-
ated.

ASET(F K , FWV , F,X) Sets theelementat index F,V of ar-
ray F K to thevalue in F,X .

CALL([, F , C , R , T) Calls method [of optional
class reference F with parameter list C D
�
�
 C E ,
putting the return value in R if no exception is
thrown, or setting T to thethrown exception. Ei-
ther R or T will benull on completion of the
CALL. Exception T is not automatically thrown
from the method containing the CALL: T must
be explici tly tested andits exception rethrown
if that behavior is desired. F is not needed for
static methods.

COMPONENTOF(F\K , F V , F X) Puts the boolean
valuetrue (1) in F\K if object F X is an instance
of the component type of array FWV , or false
(0) otherwise.

CONST(F , � ,]) Assignsnumeric or string constant� of type] to variable F .
GET(FYK , B , F V) Puts the value of field B of optional

object F V in variable F\K . F V is not necessary for
static fields.

INSTANCEOF(F\K , F V , �) Puts the boolean value
true (1) in F\K if object F V is aninstanceof class� , or false (0) otherwise.

MOVE(F K , FWV) Copiesthevaluein F,V into F K .
NEW(F , �) Create a new uninitialized instance of

class � , storing a reference in F . A classcon-

4

structor must be invoked using CALL in order
to initialize the instance.

NOP() Performsno operation.

OPER(^ , F , G) Performsoperation ^ onthevariables
in list G , storing the result in F . The operation
is representedasa string; figure 3 listsall valid
operation strings. The operationsperformedby
the strings are identical to the operations per-
formed by the Java bytecode operation of the
samename,except that no exceptionsareever
thrown. See [LY96] for details.

SET(B , F\K , F V) Setsfield B of optional object F\K to
the value of F V . F\K is not necessary for static
fields.

The harpoon.IR.QuadSSA.Code class pro-
vides a means to access the QuadSSA form of
a given method; see the definition of superclass
harpoon.ClassFile.HCode and the example
codein harpoon.Main.Main for details.

References

[App98] Andrew W. Appel. Modern Compiler Im-
plementation in Java. CambridgeUniver-
sity Press,1998.

[LY96] Tim Lindholm and Frank Yelli n. The
Java Virtual Machine Specification.
Addison-Wesley, September 1996. On-
lineathttp://www.javasoft.com/
docs/books/vmspec.

5

package harpoon.IR.QuadSSA;

Quadruple statements
abstract class Quad implements HCodeElement
AGET(HCodeElement source, Temp dst, Temp objectref, Temp index)
ALENGTH(HCodeElement source, Temp dst, Temp objectref)
ANEW(HCodeElement source, Temp dst, HClass hclass, Temp dims[])
ASET(HCodeElement source, Temp objectref, Temp index, Temp src)
CALL(HCodeElement source, HMethod method, Temp objectref, Temp params[],

Temp retval, Temp retex) // objectref, retvalmaybenull
CJMP(HCodeElement source, Temp test)
COMPONENTOF(HCodeElement source, Temp dst, Temp arrayref, Temp objectref)
CONST(HCodeElement source, Temp dst, Object value, HClass type)
FOOTER(HCodeElement source)
GET(HCodeElement source, Temp dst, HField field,

Temp objectref) // objectrefmay be null
HEADER(HCodeElement source, FOOTER footer)
INSTANCEOF(HCodeElement source, Temp dst, Temp src, HClass hclass)
METHODHEADER(HCodeElement source, FOOTER footer, Temp params[])
MOVE(HCodeElement source, Temp dst, Temp src)
NEW(HCodeElement source, Temp dst, HClass hclass)
NOP(HCodeElement source)
OPER(HCodeElement source, String opcode, Temp dst, Temp operands[])
PHI(HCodeElement source, Temp dst[], int arity)
PHI(HCodeElement source, Temp dst[], Temp src[][], int arity)
RETURN(HCodeElement source, Temp retval) // retvalmaybe null
SET(HCodeElement source, HField field, Temp objectref,

Temp src) // objectrefmay be null
SWITCH(HCodeElement source, Temp index, int keys[])
THROW(HCodeElement source, Temp throwable)

Stringconstants for opcode fieldof OPER_
"acmpeq", "d2f", "d2i", "d2l", "dadd", "dcmpg", "dcmpl", "ddiv", "dmul",
"dneg", "drem", "dsub", "f2d", "f2i", "f2l", "fadd", "fcmpg", "fcmpl",
"fdiv", "fmul", "fneg", "frem", "fsub", "i2b", "i2c", "i2d", "i2f", "i2l",
"i2s", "iadd", "iand", "icmpeq", "icmpge", "icmpgt", "idiv", "imul",
"ineg", "ior", "irem", "ishl", "ishr", "isub", "iushr", "ixor", "l2d",
"l2f", "l2i", "ladd", "land", "lcmpeq", "lcmpge", "lcmpgt", "ldiv",
"lmul", "lneg", "lor", "lrem", "lshl", "lshr", "lsub", "lushr", "lxor"`

;

Figure3: Classes comprising theQuadSSA intermediate representation. Only the constructors are shown;
theobject field variablescorrespondexactly to thenamesof theconstructor arguments.

6

A Quick reference

Class Name Description
HEADER Start nodefor control-flow graph. Performsnooperation.
METHODHEADER Subclassof HEADER with additional method-argument information.
FOOTER Endnode for control-flow graph. Performsno operation.
AGET Fetch from an indexed arrayelement.
ALENGTH Accessthelength of anarray.
ANEW Createanew arrayobject (uninitialized).
ASET Assign a value to an indexed arrayelement.
CALL Invokeanobjectmethod.
CJMP Conditional jumpbasedonaboolean value.
COMPONENTOF Determine whether an object reference is an instance of the component

typeof anarray reference; result is aboolean value.
CONST Assign numeric or stringconstantsto compiler temporary variables.
GET Fetch thevalueof anobject field.
INSTANCEOF Determinewhetheranobject referenceisaninstanceof agivenclass; result

is abooleanvalue.
MOVE Assign onecompiler temporary to another.
NEW Createanew uninitializedclassobject.
NOP Do nothing.
OPER Performa 1 -aryoperation onsetof compiler temporaries.
PHI 0 -function representation.
RETURN Return avalue for thismethod invocation.
SET Assign a value to an object field.
SWITCH Jumpto oneof multiple targets,dependingon akey value.
THROW Return an exception for thismethod invocation.

7

