Harpan Projed Compiler Intermediae Represenation

C. Scott Ananian

October12,1998
Revision: 1.16

1 Conceptual Overview

The Harpoon prgect compiler front-end translates
Java bytecock files into a class-orierted intermed-
ate representation which is intended to be easkr to
aralyzeand maripulate than bytecaleasanbly lan
guage The intermedate represeatation is control-
flow-graph structured, with al control flow explicit.
It is also maxmally factoredand in stdic single as
signmen (SSA) form. Intemdly the intermedate
repreertaton is known as “QuadSSA;” referring to
its detivaton from quadruple-gyle IRs and its SSA
form.

1.1 Quadruples

Unlike expresson-tree structured intermedate rep
resertations, where every operand canoptiondly be
theroat of anexpresdon, quadruple represertatons
are flat. The “typical’ statementis of the form
a < b @ c; thenamequadruple comesfrom thefaad
tha there are four comporerts (a, b, ¢, ®) [App98].*
Obviously an IR expressve enough to represert the
ertire Javalanguage needsmorethan a four compo
nent operdion statement, but we have attempted to
retainthe atomic simplicity of thequaduple form.

1We used to stard for an arbitrary binaryoperator

1.2 Static Single-Assignment Form
Quaing from Appel in [App98]:

Many daaflov aralyses needto find the
use-gtes of ead defined variable, or the
ddfinition-sitesof ead variable usedin an
expressbn. The def-use chain is a data
structure thatmakeghis efficient: for each
statement in the flow grgoh, the comgler
can keep a list of pointersto all the use
sitesof variables defined there, anda list
of pointersto all definition sites of thevari-
abesusal there...

An improvemert on the idea of def-use
chains is staic single-assgnmem form, or
SA form, an intermedate representaton
in which each variable hasonly one defini-
tionin the program text. The one (stdic)
definition-site may be in a loop that is
exeauted mary (dynamic) times, thus the
namestatic single-assgnmert form.

An exampk of the use of SSA formis shown in
figure 1. Simple variable reramingsufficesto trars-
form straight-line code into SSA form. Subscripts
are usedto empladze the relationship of the re-
namedvarigblesto the original variables. A bendit
of SSA form which is obvious from the exampleis
thatunrelated usesof the samevariable in the source



Corvertiond Staic Singe Assignment

i=0 ip =10

i=i+1 iy =ig+1
j = func(i) jo = func(ii)
i= i, =2

Figurel: SSA transformaton of straight-linecode

program (i, i») bemmedifferert variablesin the
SSA form, eliminding falsedependercies.

SSA form becanesmore complex whenwe intro-
duce brarchesard loops Figure 2 shows the nec-
essay trandormatian. You will natice theintroduc-
tion of phi functions at locaionswhere control flow
meiges. The¢-funcion “magtcaly” choosesavalue
from amangits argumerts basdon the cortrol flow
pathusedto reachit. Notethat, although ¢-functions
are impossble to implemert direcly in an instruc-
tion sd (due to thar magical properties) they can
be redaced by move instructions along each con-
trol flow edge leading to the ¢-function. Doing so
violates the static single assgnmert corstraints, but
leads to codeexecualde by real procesors

Unless you are implemening code gerergor
backerls it isunlikely you will needto so redace¢-
fundionsor view themas anything but magical n-ary
opeatas. However, it is important to observe and
maintain the ordering relaionshp betwee control-
flow edgesand ¢-function arguments during trars-
formaton and andysis.

Analysis, trarsformation, and optimization of the
IR is simplified by its SSA form. In addtion, the
QualSA formis maximally factored Condarntsare
not allowedasquadruple operards (except for aspe-
cial const operdion); which creatsaunique map-
ping from variable namesto valuesin the compua-

Conventional Static Single Assgnmert
i=0 ip=0
if z then if z then
i=1 ig=1
ip = ¢(do,11)
j = func(i) jo = func(ip)

Figure 2: SSA trangormation of branching code.

tion. Thissimplifies valuearalysis.
Appel desaibesseveral other benefitsof the SSA
formin [App98]:

—If avariable has N usesand M defini-
tions (which ocaupyabout N + M indruc-
tions in a program), it takesspae (and
time) proportional to N - M to represen
def-use chans—a quadratic blowup. For
amog all realistic programs, the size of
the SSA form is linear in the size of the
original program.

—Uses and defs of variablesin SSA form
relae in a uselul way to the dominatar
structure of the control flow graph, which
simplifies algorithmssuchasinterference-
graph condruction.

1.3 Exception handling

Excegtion handing in the Java language compli-
caes control-flow. Opeations (such as division,
possbly by zero) may implicitly throw exceptions
tha radically redrect the flow of control. To fa-
cilitate andysis, excegtion handling and its as®ci-
ated control-flow is mack explicit in the intermedi
ate regresentation. For example, null pointer ard
array bounds cheds are inserted before objectard
array references, and division by zero is explicitly



checkedbefore every division opaation. Theseex-
plicit and comprehersive checks are interdedto be
targeted by aggressve optimizations desgnedto re-
moved those cagswith are redundart, impossible,
or otherwise unnecessary. The desgn goal of the IR
is thatno stattmen shauld throw animplicit excep
tion underany circumsarce. Pursung that goal in-
volves changing the semantics of method invocaion
slightly: sothatthecal | statemert notthrow anim-
plicit exception, thelR cal | hasbeen definedtore-
turn two values. In addition to the cornventional (ard
optional) metlod return value, an “excegtion return
value” is definedto hold the excepion thrown by a
method, or nul | if the method completed without
throwing an excepion. Explicit testsof the excep
tion retun value can then be added after thecal |
staemen, and control-flow made explicit aswith the
other IR operdions. Thet hr ow staemert in the IR
is thus strippedof its specia mearing and becomes
simpy analterrater et ur n statementfortheexcep
tion return value?

2 Implementation Details

The IR descibed in thee nates is defined in
theJavapackage har poon. | R QuadSSA. Source
code armd binaries are available at http://
www. magi ¢. | ¢s. m t. edu/ Har poon.

The QuadS staemerts are called Quads and
aresubclasesof har poon. | R. QuadSSA. Quad;
they are graphstrucured and doubly-linked to
emable both forward and reverse traversal of
the control-flow graph  Edges are represented
by Objects to facilitate assodating analysis
data with these cortrol-flow graph edges. The
paent class Quad contains the graphoriented

2Try, catch, and finally blocks are, of couse, takeninto
corsiderationwhen a bytecale at hr ow is translatedo an IR
THROW

methods of the objects Its superinterface
har poon. d assFi | e. HCodeEl enent
definesstancard metods to get object ID numbers
and souce file informaton which are valid for
elemeris of ary intermediaterepresetation.

An enumaeation of Quad typesand ther uses is
provided in figure 3. It may be observed tha the
represeantaion usesbath headerand footer nodes, in
the HEADER and FOOTER clas®s. HEADER nodes
contain a spedal link to the FOOTER to allow this
node to be easly identified, and a spedal sulclass
of HEADER, METHODHEADER, provides informa-
tion onthe assgnment of method argumertsto com-
piler tempomary variables at the start of method code

With the exception of CIMP, SW TCH, PHI ,
HEADER, METHODHEADER, and FOOTER, all
Quads have exactly one predecesor and one suc-
ces®rin thecontrol flow graph.

2.1 Quads

Hereare moreddails on ead Quad statament First
the header and footer nodes:

HEADER(f) Stat nodein the control flow graph
with end nocke f. Performs no operation. Zero
predecessas, One SUCCESSa.

METHODHEADER(f, p) Start node in the con-
trol flow graph for a method with parameers
p ard endnaode f. A subdass of HEADER. The
method argumerts are loadedinto pyg . . . p,, be-
fore execution stats. Zero predecesors, one
SuCcoesr.

FOOTER() Find nodein control-flow graph Per-
forms no operaion. All RETURN and THROW
statements mug have the graph’s FOOTER as
their only succesa. FOOTER nodesmay have
ary postive numberof prececes®rs They have
NO SUTESSASS.



Thefollowing Quads modify the control-flow:

PHI (¢, 1) Cortrol flow mergesatPHI nodes. A phi
noderepreseantsalist of ¢-functions of the form

ti = d(lio, liv - - - 1ij)
where j is the arity of the ¢-fundion; tha is,
the numbe of predecessas to the node. Any

non-negyaive numbe of predeesas, one suc-
CEsr.

CJIMP(t) Condtiond jump basel on the booleant.
If ¢ is false (0), control flowsto the first succes-
sa (next [ 0] ). If tistrue(1), cortrol flowsto
the second sucesa (next [ 1] ). Oneprede-
CEsSDI, tWOo SUCESDIS.

SWITCH(t, k) Indexed jump. Depending on the
value of index variable ¢ and a key list &, con-
trol is trandemredto target,, wheet = k. If
t doesnat matd ary key in k, control is trars-
ferred to the defaut target,, ., where k;, is the
lastkey in thekey list. Onepredecesor, multi-
ple successas.

RETURN(¢) Retun an optiond value ¢ from this
method. One predecessa, one suceessa. The
singe suwccesor should be a FOOTER node

THROW(%) Throws an excegion ¢ as the result of
this method. One prede@ssor, one succesa.
Thesingle suceessorshould beaFOOTER node

Theremahing Quadshave noeffecton control flow,
and have exadly one predeces®r andone succesa.
No excegionsare thrown.

AGET(t1, to, t3) Fetches the elementat index t3
fromarray t, and storesthevaluein ¢;.

ALENGTH(#1, t2) Puts the length of aray ¢ into
variablet;.

ANEW(t1, ¢, l) Creakes a new uninitialized array
with type ¢ anddimensons [y . . .1,, staing a
referercein ¢;. Thenumterof dimensonssup-
pliedin list/ maybesmaller thanthenumker of
dimersions of array classtype ¢, in which cae
only then dimenrsionsspeifiedin [ will becre
ated

ASET(t1, to, t3) Setstheelementatindex ¢, of ar
rayt; tothevaluein ts.

CALL(m,t,p,r,e) Calls mettod m of optiond
class reference ¢ with parameer list py . . . py,
putting the return value in r if no excegion is
thrown, or setting e to thethrown excegtion. Ei-
ther r or e will benul | on completion of the
CALL. Exception e is not aubmatically thrown
from the method containing the CALL: e mug
be explicitly tested andits exception rethrown
if that behavior is desred. ¢ is not needed for
static mettods.

COMPONENTOF(t1, to, t3) Puts the bodean
valuet r ue (1) in ¢y if object ¢3 is aninstance
of the compmert type of array to, or f al se
(0) otherwise

CONST (¢, ¢, y) Assignsnumaeic or string congdart
c of typey to variable t.

GET (¢4, f, t2) Pusthe value of field f of optiond
objectt, in variade t;. t, is not necesay for
static fields.

INSTANCEOF(t1, t9, ¢) Puts the bodean value
t rue (1)in ty if objectt, is aninstanceof class
c,or fal se (0) othewise.

MOVE(t1, t2) Copiesthevalueints intot;.

NEW(t, c¢) Create a new uninitialized ingarce of
class ¢, storing a reference in t. A classcon



structor must be invoked using CALL in order
to initialize the instarce

NOP() Peiforms no operation.

OPER(o, t, 1) Perfamsoperdion o onthe variables
in list [, storing the result in ¢. The operdion
is represertedasastring; figure 3 listsall valid
opeation strings. The operaionspeformedby
the strings are idertical to the operations per
formed by the Java bytecale operaton of the
samename,excep tha no exceptionsareever
thrown. See[LY96] for deails.

SET(f, t1, t2) Setsfield f of optional object ¢, to
the value of #,. t; is not ne@sary for static
fields

The har poon. | R QuadSSA. Code class pro-
vides a mears to access the QuadSSA form of
a given mehod seethe definition of superdass
har poon. d assFi | e. HCode and the exampke
codein har poon. Mai n. Mai n for detdls.

References

[App98] Andrew W. Appel. Modem Compikr Im-
plemenation in Java. Cambridge Univer-
sity Pres, 1998.

[LY96] Tim Lindhom and Frark Yellin. The
Java \Mrtual Madhine Specffication.
Addison-Wedey, September 1996 On-
lineatht t p: / / www. j avasoft. conf
docs/ books/ virspec.



package harpoon. | R QuadSSA;

Quadruple statenents
abstract class Quad inpl enents HCodeEl enent
AGET(HCodeE!l erent source, Tenp dst, Tenp objectref, Tenp index)
ALENGTH( HCodeEl enment source, Tenp dst, Tenp objectref)
ANEW( HCodeEl enent source, Tenp dst, HC ass hclass, Tenp dins[])
ASET( HCodeEl enent source, Tenp objectref, Tenp index, Tenp src)
CALL( HCodeEl enent source, HWethod nethod, Tenp objectref, Tenp parans[],
Tenmp retval, Tenp retex) // obectref,retvalmaybenull
CIMP( HCodeEl enent source, Tenp test)
COMPONENTOF( HCodeEl ement source, Tenp dst, Tenp arrayref, Tenp objectref)
CONST( HCodeEl enment source, Tenp dst, bject value, HO ass type)
FOOTER( HCodeEl enment source)
GET(HCodeEl enent source, Tenp dst, HField field,
Tenp obj ectref) // objectref may be null
HEADER( HCodeEl enent source, FOOTER footer)
INSTANCEOF( HCodeE!l emrent source, Tenp dst, Tenp src, HO ass hcl ass)
METHODHEADER( HCodeEl enent source, FOOTER footer, Tenp parans[])
MOVE( HCodeEl enent source, Tenp dst, Tenp src)
NEW( HCodeE!l enent source, Tenp dst, HCO ass hcl ass)
NOP( HCodeE!l enent sour ce)
OPER( HCodeEl enent source, String opcode, Tenp dst, Tenp operands[])
PHI( HCodeEl ement source, Tenp dst[], int arity)
PHI( HCodeEl ement source, Tenp dst[], Tenp src[][], int arity)
RETURN( HCodeEl enent source, Tenp retval) //retvalmaybenull
SET(HCodeEl ement source, HField field, Tenp objectref,
Tenmp src) // obectrefmay be null
SWITCH( HCodeEl ement source, Tenp index, int keys[])
THROW( HCodeEl enent source, Tenp throwabl e)

Stringconstarisfor opcode fieldof OPER

{ "acnpeq", "d2f", "d2i", "d2I", "dadd", "dcnpg", "dcnpl", "ddiv", "dmul",
"dneg", "drent, "dsub", "f2d", "f2i", "fa21", "fadd", "fcmpg", "fcnpl",
“fdiv', "frmul", "fneg", "frent, "fsub", "i2b", "i2c", "i2d", "i2f", "i2l",
"i2s", "iadd", "iand", "icnpeq", "icnpge", "icnpgt", "idiv", "inmul",
"ineg", "ior", "irem, "ishl", "ishr", "isub", "iushr", "ixor", "l|2d"
"l2f", "12i", "ladd", "land", "lcnpeq", "lcnpge", "lcnmpgt", "ldiv",
“l'mul™, "lneg", "lor", "lrent, "lshl™, "lIshr", "lsub", "lushr", "Ilxor"

}s

Figure 3: Classes compising the QualSSA intermedate represerntation. Only the constructors are shawn;
theobject field variables correspand exadly to the names of the condructor arguments



A Quick reference

ClassName Description

HEADER Stat nodefor control-flow grgph. Performsno operation.

METHODHEADER Sulxlassof HEADER with additional method-argumert information.

FOOTER Endnode for cortrol-flow graph. Peforms no operation.

ACET Fetth from an indexed array elemer.

ALENGTH Accessthelength of anarray.

ANEW Crede anew array object (uninitialized)

ASET Asdgn avalueto an indexed array elemert.

CALL Invokeanobjectmethod.

cawe Corditional jumpbasedon abodean value

COMPONENTOF Detamine whether an object referenceis an instance of the compmert
typeof anarray reference; resutt is a boolean value.

CONST Asdggn numeic or string constantsto compiler temporary variables.

GET Fetd the value of anaobject field.

| NSTANCEOF Detaminewhetheran object referenceis aningarceof agiven class resut
is abooleanvalue.

MOVE Asdggn onecompiler tempaary to another.

NEW Crede anew uninitializedclass object.

NOP Do nathing.

OPER Perborm an-ary opaation on setof compier tempaaries

PHI ¢-function representation.

RETURN Retun avalue for this method invocation.

SET Asdgn avalueto an objed field.

SW TCH Jumpto one of multiple targets, deperding on akey value.

THROW Retun an exception for this method invocation.




