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High-level languages have much to offer the hard-
ware designer. Freed of the tyranny of gates, it is
possible to approach circuit function in terms of the
algorithm or protocol it implements. Design rule
checking and gate-level optimizations are becoming
impossible for large designs without computer assis-
tance anyway, the argument goes, so why not del-
egate all low-level design and synthesis to the ma-
chine, and free the humans to work on the high-level
tasks the machine is incapable of?

In addition, a successful hardware compiler for
a high-level language allows for more flexible
hardware-software co-design and simulation. Ide-
ally, a single high-level language could be used for
both the application software and hardware. The
model can be compiled completely in software for
simulation or debugging, then easily partitioned to
implement a subset of functions in hardware. If the
compiler is retargettable, prototypes can be imple-
mented using FPGA technology, and then the same
source used to layout an ASIC when the design is
finalized.

This work will explore the use of the general-
purpose C programming language for hardware de-
scription, focusing on compiler issues. The imple-
mentation of a C-to-structural VHDL compiler is
discussed, and we attempt to assess quantitatively the
effect of C language features on hardware synthesis.

1 Hardware Description Languages

The two most common hardware description lan-
guages used are VHDL (the Very High Speed Inte-
grated Circuit — VHSIC — Hardware Description
Language) [8] and Verilog [12]. These are roughly
equivalent: VHDL is mandated for Department of
Defense work, while Verilog is more common in in-
dustry [2].

David Galloway writes:

There is one compelling reason why a C
language based hardware description lan-
guage may prove successful: there are mil-
lions of C programmers in the world who
might be quick to adopt the language. This
is in contrast to the agony suffered by a
C programmer trying to learn moden hard-
ware description languages such as VHDL
or Verilog. [4]

In Galloway’s FPGA synthesis context, other ben-
efits of C as an HDL are evident as well; flexible
codesign/partitioning and integrated simulation fore-
most. In the FPGA-coprocessor context, it is very
useful to be able to swap out arbitrary portions of
a C-coded application to be compiled into custom
hardware for speed. If the C program expresses
the entire application process, a conventionally-
compiled executable of identical sources may be
used for debugging or execution on a machine with-
out an FPGA coprocessor.
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These properties prove desirable for more gen-
eral hardware targets. In developing an application-
specific integrated circuit or custom DSP, for exam-
ple, it is very useful to be able to completely simu-
late both the hardware and the driving software in the
same framework during development. This is facili-
tated by using a single general purpose language for
application software and hardware description. Sim-
ilarly, if testing of the preliminary design proves un-
satisfactory, it is convenient to be able to repartition
the software/hardware division of the system without
having to recode portions of the combined model.1

The main drawback to such an approach is the ex-
pressivity of C. It is desirable to obtain a straight-
forward mapping between specification and hard-
ware synthesis, but C contains several features which
prove difficult to support on a hardware target. It
may be noted, however, that C is not alone in this
regard: both VHDL and Verilog contain “unsynthe-
sizable” language constructs, as well. There is an
IEEE working group (1076.3) charged with the cre-
ation of a standard synthesizable subset of VHDL; it
is not unreasonable for us to define a similar subset
of C for use with hardware targets.

In other cases, however, a superset of C’s seman-
tics seems warranted. The particular case this pa-
per will address concerns non-standard bit-width in-
teger types. In synthesis contexts, it is often known at
specification time exactly how wide the representa-
tion of a given signal need be. Using a 16- or 32-bit C
datatype to represent a 12-bit datapath seems waste-
ful, foreboding an inefficient translation to hardware.
It appears that we ought to define an int12 t type
for this case to correspond to C’s standard int8 t,
int16 t and int32 t types. We have resisted the

1These views are echoed by many in the FPGA community,
for example [7]. Incidentally, the VHDL community agrees, but
proposes VHDL as the new unified application/hardware lan-
guage [11, xiii]. However, the slowness of current VHDL simu-
lators/compilers makes this suggestion untenable.

temptation to add features to C, in order to preserve
the ability to compile and simulate a unified hard-
ware/software model with standard C tools.2

2 Semantics of C HDL

When writing a hardware compiler for C, we must
deal with the traditional bugaboo of any advanced
compiler: the necessity of reconstructing an author’s
intent from their code. C is a sequential program-
ming language designed for a general computational
model; mapping it to hardware is often non-trivial.
The standard tools of the parallelizing compiler must
be deployed to reconstruct loop structure, induction
variables, aliasing and data dependencies from the
source, and perform loop unrolling and other op-
timizations to regenerate parallelism which the se-
quential structure of the input has hidden. Never-
theless, we can come up with a reasonably straight-
forward semantics for the translation of C code to
hardware. This semantics is a superset of that de-
scribed in [4].

First, we declare that all straight-line code exe-
cutes in zero time. In the example of figure 1, the
externally visible value of signal a jumps directly
to 5 when the block is executed; it does not transi-
tion through 3. Conceptually one can imagine that
there is an entirely separate variable representing the
externally visible value — a ext, say — which is
assigned the value of a just once, at the end of the
block. This rule allows us to synthesize straight-line
code as a combinational logic block.

Branching and looping code then naturally define
sequence points, where we can determine an order-
ing to the combinational blocks. These sequence
points delimit separate states in a synthesizable state

2Object-oriented techniques prove to be useful (see section
6), but here also standard C++ can be used. Compare the work
in [7], which shares our unified modelling goals.
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/* ‘a’ is an externally visible signal */
a = 3;

. . . straight-line code. . .

a = 5;

Figure 1: Example C code illustrating concurrent ex-
ecution semantics.

machine. Thus, the hardware described by figure 2
corresponds to a three-state machine, with states cor-
responding to pre-loop, in-loop, and post-loop con-
ditions. We remain in the in-loop state until we exit
the loop, either via break or the loop test. The ex-
ternally visible values of a are: 0, while in the pre-
loop state; 1, 3, 6, 10, and 15, while in the in-loop
state; and 20 while in the post-loop state. It takes 6
synchronous clock cycles for a to transition from 0
to 20.3

Note that unrolling this loop will change the exter-
nally visible states of the machine, and so unrolling
should proceed cautiously. For predictability, it is
best not to unroll any loops by default, and allow the
programmer to specially annotate functions which
they desire to be unrolled. Performance considera-
tions, however, may suggest rather that all internal
states be opaque, allowing the compiler maximum
scheduling flexibility. Our work inclines toward the
latter view.

Our implemented semantics map functions to

3Note that the externally-visible behavior in the current-
implementation is somewhat different: the first and last loop
iterations execute concurrently with the pre-loop and post-loop
code, respectively, so that the externally-visible states for the ex-
ample would be: 1, 3, 6, 10, and 20. See section 4 and figure 6
for details.

/* ‘a’ is an externally visible signal */
int i;
a = 0; /* pre-loop */
for (i=1; i<5; i++)
a += i; /* in-loop */

a = 20; /* post-loop */

Figure 2: Example C code illustrating sequence
point semantics.

hardware objects. The input and output ports of the
synthesized hardware correspond to the function pa-
rameters and return value, respectively. Nested func-
tions correspond to hierarchical hardware composi-
tion; recursive functions thus refer to infinitely ex-
tended hardware, and are disallowed.4 Using a func-
tion for a frequently reused subprogram does not
save hardware in the same way it saves code size,
but can serve as a useful hint to an optimizing hard-
ware compiler that this particular logic block may be
profitably multiplexed on its idle cycles.

Static variables and their associated state map in
an obvious way to registers. Arrays, pointers, and
their associated memory model can sometimes be
localized and mapped to a RAM structure in hard-
ware (especially for small fixed-size arrays), but of-
ten pointer arithmetic requires an full-fledged mem-
ory interface to implement properly. The behavior
of these constructs is implementation dependent, but
discouraged. The general rule is that non-obvious
mappings are disallowed: if the programmer cannot
easily visualize how a construct will map into hard-
ware, then it is very difficult for the compiler and

4A more refined, if complex, semantics would translate re-
cursive functions into their synthesizable equivalent by rewrit-
ing recursion as loops whenever possible. This strategy suffers
from somewhat unpredictable behavior.
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programmer to agree on the correctness of the result.

3 Limitations

The above semantics show some inherent limitations
of C as a hardware description language. At the most
basic level, C is defined with a general memory and
computation model that does not hold for hardware.
This leads to difficulties implementing, for example,
pointer arithmetic. Its operator and type set are over-
rich for the target; also, ingrained conventions of C
coding (the use of strings and char *) are essen-
tially meaningless in a hardware context.

More serious, though, is the lack of a timing gram-
mar to define input/output behavior. These con-
straints must be specified in some manner outside the
scope of the language, or by strong reliance on the in-
herently synchronous definition of our looping con-
structs. We would prefer to eliminate the notion of
external visibility at sequence points and allow flex-
ible unrolling, retiming, register insertion/deletion,
and other sequence optimizations subject only to
user-defined time/cycle contraints. This requires
some external timing specification in addition to the
C source.

Also, function calls are very inflexible models of
hardware. The single return value restriction is espe-
cially difficult. This can in large measure be allevi-
ated by moving to an object-oriented programming
language/style; this is discussed further in section 6.

Other limitations are specific to the current im-
plementation, although many are likely to be found
in most or all implementations of these semantics.
Floating point math is extremely expensive in hard-
ware and very difficult to do combinationally, as our
semantics mandate. Therefore we have omitted sup-
port for floating point types in our implementation.5

5See [10] for information on what an implementation would
entail.

C .sp1 .spx .ssa .sbs .vhdl.spd

scc exit1 porky ssa bitsize vgen

phi/cfg phi phi/cfg

Figure 3: Hardware compiler pipeline stages

Integer addition and subtraction are easy, but mul-
tiplication and division are, again, very expensive to
perform combinationally. Division is not supported
in this implementation, but multiplication is, with the
warning that it is not generally a good idea.

This implementation does not attempt to support
arrays and pointer arithmetic in any form, although
the previous section suggested ways in which it
might be done. Similarly, there is no support for
static variables in this implementation, for reasons
of simplicity only.

4 Implementation

The C hardware compiler discussed in this paper was
implemented using the SUIF (Stanford University
Intermediate Format) compiler system [13]. Trans-
lation from C to structural VHDL takes place in a
six stage pipeline, using two code libraries to extend
the base SUIF system. Except for the first and last,
every module reads and writes the SUIF intermediate
representation, annotated with the various pieces of
information collected at each stage. Figure 3 shows
the pipeline schematically.

The standard SUIF front-end, scc, is used to gen-
erate a structured intermediate-format file from C
source code. The output from this stage is given an
.spd suffix.

The next module is named exit1. Its job is
to create single-entry, single-exit functions from the
general SUIF code output by scc. It creates a new
label and a return opcode at the end of each func-
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tion, using a new “return value” variable. It then re-
places return statements through the code with cpy
and jmp opcodes. This code restructuring makes it
easier for the VHDL-generation stage to synthesize
the function output port. The output of exit1 is
given an .sp1 extension.

The SUIF optimizer, porky, is then used to con-
vert the .sp1 file into low-SUIF by breaking down
high-level for, loop, if, block, and mbr structures.
This simplifies the VHDL generation phase by re-
ducing the number of different opcodes it must trans-
late. We also perform constant propagation, common
subexpression elimination, and dead-code elimina-
tion to reduce the amount of generated logic. These
optimizations could all be performed by a aggressize
logic optimization after synthesis, but at a greatly in-
creased cost. Finally, porky does jump optimiza-
tion to remove any inefficiencies introduced by the
simple-minded exit1 pass. The optimized low-
SUIF output is given an .spx extension.

The ssa module then translates the intermediate
representation into Static Single Assignment (SSA)
form [3]. A control flow graph of basic blocks is gen-
erated from the input, using a version of the cfg li-
brary from the machsuif package highly modified
to handle low-SUIF instead of machine-SUIF. The
dominator tree and dominance frontier are then com-
puted and used to place phi functions on the control
flow graph according to [1]. The variables in the pro-
gram are renamed and the phi function information
written out as annotations to the SUIF instruction ob-
jects. The phi library manages the phi function in-
formation, which is reused in all following stages.
The output of this stage is given the extension .ssa.

Modules to optimize the intermediate representa-
tion to generate more efficient hardware fit into the
pipeline after the conversion to SSA form. One such
module was implemented, which attempts to narrow
the bit-widths of variables in order to generate more
efficient datapaths. This bitsize module will be

a = b + c;
d = a * (e - f);

Figure 4: Hardware generated for straight-line code.

discussed in section 5.
The final module, vgen, generates structural

VHDL code from an SSA-annotated input file. It is
worth noting that the structural VHDL produced is
merely a convenient notation for describing logic at a
module and netlist level; VHDL is a language much
more capable than the use to which we are putting it.

The rules for generating logic from straight-line
SSA form input are illustrated in figure 4. Each basic
three-register instruction maps directly to a hardware
functional unit; its source and destination registers
indicate connections to the ports of the unit.

Each basic block has an additional signal asso-
ciated with it, which we call the “execution bit.”
This bit is set to pass the flow of control, and corre-
sponds to control flow graph edges. Branch instruc-
tions switch the bit according to their target, and phi
functions become multiplexers controlled by the bits.
Figure 5 illustrates.

Back edges in the control flow graph have registers
added in-line, as figure 6 illustrates. Note that the in-
put execution bit ( ) is only active for one clock
cycle; consequently the output execution bit ( ) is
also active for only one cycle. This is the minimum
cycle implementation of the simple loop structure of
the figure; the first loop iteration is overlapped with
the evaluation of pre-loop code, and the post-loop
code executes on the same clock cycle as the final
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L0: if ( < 5)
L1: = + 1;

else
L2: = + 2;
L3: = ( , );

Figure 5: Hardware translation of an if-else state-
ment in SSA form, using execution bits (dashed
lines).

loop iteration. The execution bits form a one-hot en-
coding [6] of the loop state in a simple finite-state
machine.

The function prototype becomes an entity and port
description for the generated logic.

5 Optimizations

Hardware generated from a high-level language can
be optimized in a number of ways. Many high-level
optimizations on the source language will translate to
optimized hardware, but some high-level optimiza-
tions may be hardware-neutral or even generate less-

L0: = 0;
L1: = ( , );

= + 1;
if ( < 8) goto L1;

L2: = + ;

Figure 6: Hardware translation of a simple for-loop,
illustrating the handling of control-flow backedges.

is the logical OR of and .

efficient hardware. Jump optimizations, for exam-
ple, are hardware-neutral because jump instructions
do not create hardware at the synthesis step: they
merely control the naming and routing of execution
bits. Similarly, optimizations designed to ease regis-
ter pressure or other register-renaming optimizations
will have no effect once the code has been translated
to SSA form. Common subexpression elimination,
on the other hand, has the same effect on hardware
as it does on the source language: it reduces the num-
ber of computations necessary to achieve a result.

Certain optimizations may be done at either a high
or low level. Source-language common subexpres-

6



sion elimination may alternatively be performed as
part of a logic-reuse algorithm at a low level, and
dead-code elimination can be done by pruning un-
used logic. In fact, the low-level optimizations may
be able to take advantage of bit-level structure or
the logic implementation of certain operators to opti-
mize details invisible to a high-level analysis. How-
ever, the low-level optimizations will invariably be
much slower than their high-level equivalents, due to
the larger dataset they must process and the often-
exponential running time of logic optimization algo-
rithms. Hence, we want to perform our optimiza-
tions at a high level whenever possible. We also hope
to take advantage of source-language information
which may be lost in translation; induction-variable
transformations, for example, may be very difficult
to perform at a logic level.

As mentioned in section 4, the SUIF opti-
mizer porky was used to perform a variety of
general-purpose high-level optimizations on our in-
put source. We were also interested in examining
high-level hardware-specific optimizations, and in
particular whether some of the disadvantages of C as
a hardware description language could be overcome
by intelligent optimization.

The bitsize module implemented in this work
was designed to address C’s inflexible type system.
In hardware design, the exact bitwidth of various
datapaths is often known exactly, and inefficiencies
are introduced when this datapath is expressed using
one of C’s fixed-width integer types. The bitsize
module attempts to recreate the bitwidth information
using the arithmetic properties of the computation
performed. All constants are given exact bitwidths,
and the result of combining variables and constants
with a given operator can often be assigned a max-
imum bitwidth as well. The SUIF type information
for all variables was then modified to represent the
newly computed restricted bitwidths.

The current implementation does not take advan-

tage of all possible bit-width information; it imple-
ments only a def-use analysis on the SSA-format in-
put. Further optimization is often possible by exam-
ining the control flow graph. For example, analysis
of the code in figure 6 could determine that was al-
ways 3 bits wide if the condition at the bottom of the
loop was true and was an unsigned type. Since
is known to be a 1 bit type, this could be used to as-
sign a width of 3 bits as well. would be pushed
up to 4 significant bits by the increment statement,
but its value at would remain at 3 bits because of
the loop condition. This optimization requires split-
ting variables at branches to differentiate between the
width of at (three bits) and its width at (four
bits). If the width of was unknown, the loop may
be rewritten to allow the branch information to nar-
row the variable width in all but the first iteration.
This and other sophisticated width optimizations are
possible improvements that were not implemented in
the current codebase.

In an attempt to evaluate the bitsizemodule on
a realistic hardware description, it was fed the main
routine of a PDP-8 simulator written for an earlier
project. The PDP-8 has a twelve bit datapath, and
various methods were used in the code to truncate
results to obtain an accurate simulation. The unmod-
ified code also contains string operations to output
the machine state to the console during simulation;
it is to be expected that these operations would not
benefit from the bitsize module, but they would
also not typically be synthesized into hardware.

The bitsize module managed to trim
315 of the 1,466 compiler variables in the
ExecuteNextInstruction function; this
corresponded to reducing the summed datapath
width of all variables from 21,715 to 30,056 bits
(eliminating 28% of the bit paths). Elimination of
the string manipulation code changed these numbers
to 261 of 1,129 variables, for a new sum datapath
width of 16,932 bits from 23,808 bits (eliminating
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Figure 7: Performance of bitsize optimization.

41% of the bits). The 12-bit datapath was defined
using C 32-bit int types, so a ’perfect’ reduction
would have eliminated 60% of the datapath bits.
See figure 7, and note that the actual machine state
variables were outside the analyzed routine, so they
propagated their full width through the calculations.
By adding analysis of static variables, it is expected
that compiler bitwidth optimization can approach
the ideal closely.

6 Conclusions and future work

Although C is still somewhat expressivity-limited as
a hardware description language, it is anticipated that
most of its limitations can be overcome by a com-
bination of well-defined semantics and intelligent
high- and low-level optimization. In particular, opti-
mizations targetting C’s inflexible type system seem
to show that most of the inefficiencies of fixed-width
data types can be optimized away using a fast al-
gorithm. Standard C optimization techniques, such
as constant-propagation and common subexpression
elimination, can be used profitably to generate opti-
mized hardware as well.

Certain C features still hamstring its expressivity
as an HDL. Foremost of these in the present work

Figure 8: Sample graph output from the cfg library
for the optimized ExecuteNextInstruction
function.
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is C’s limiting single-value-return function syntax.
Hardware blocks often have multiple outputs, but it
is difficult to express this using C syntax. However,
the current syntax does provide a clean in/out mark-
ing of signals. However, it has difficulty dealing with
bidirectional signals.

The solution to these problems seems to lie in a
more object-oriented approach. If the basic hard-
ware description unit is a class, instead of a func-
tion, we can define multiple interface functions to
internal state maintained in class member variables.
The added semantics make hierarchical composition
easier, as well. The semantics are an easy superset
of the ones described for C in this paper, and are
the subject of current work. However, the SUIF sys-
tem has limited support for object-orientation at the
present time, so the continuation of this work is cur-
rently being implemented in Java. Open questions
on the semantics still remain, among them the ex-
pression of timing and interface constraints in C or
its cousins. At the moment, an auxillary interface de-
scription language is being used to express these con-
straints; it would be better if this information could
be integrated into the source language.

A Graphing extensions to the cfg
library

As part of the modifications to the control-flow
graph library, an existing output routine was ex-
tended to produce input suitable for the vcg graph-
layout tool [9]. Illustrative output from the optimized
ExecuteNextInstruction code evaluated in
section 5 is included as figure 8.
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