Region-Based Memory Management for
Real-Time Java
by
William S. Beebee, Jr.

Submitted to the Department of Electrical Engineering and Computer
Science
in partial fulfillment of the requirements for the degree of

Masters of Engineering in Computer Science
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
September 2001

(© 2001 Massachusetts Institute of Technology
All rights reserved

AUthor ..
Department of Electrical Engineering and Computer Science
August 24, 2001

Certified by . ..o
Martin Rinard

Associate Professor of Computer Science

Thesis Supervisor

Accepted by ...
Arthur C. Smith

Chairman, Department Committee on Graduate Students

Region-Based Memory Management for Real-Time Java
by
William S. Beebee, Jr.

Submitted to the Department of Electrical Engineering and Computer Science
on August 24, 2001, in partial fulfillment of the
requirements for the degree of
Masters of Engineering in Computer Science

Abstract

The Real-Time Specification for Java [3] provides a framework for building real-time
systems. We implemented the memory management portion of this specification and
wrote sample applications to test it. We discuss the structure of our implementa-
tion and problems encountered during implementation and application development.
The primary implementation problem arises from a design in which some threads
are vulnerable to garbage collection pauses because they can allocate memory in
the garbage-collected heap, while other threads must execute independently of the
garbage collector to provide acceptable response times even in the face of garbage
collection pauses. The Real-Time Specification for Java allows the different kinds
of threads share the same resource. Using blocking locks to manage access to these
shared resources can lead to unacceptable interactions in which one thread indi-
rectly and unacceptably forces another thread to observe garbage collection pauses.
We solved this potential problem by using non-blocking, optimistic synchronization
primitives throughout the implementation. A second implementation problem arises
from the need to manage the memory associated with the memory management data
structures. The lack of a recycling memory area which can be accessed from any
execution point led to the development of a new memory area not mentioned in the
specification. Because we found it difficult, if not impossible, to correctly use the
Real-Time Java extensions without automated assistance, we developed an extensive
debugging facility.

Thesis Supervisor: Martin Rinard
Title: Associate Professor of Computer Science

Acknowledgments

This research was supported in part by DARPA/AFRL Contract F33615-00-C-1692
as part of the Program Composition for Embedded Systems program. I would like
to acknowledge Scott Ananian for a large part of the development of the MIT Flex
compiler infrastructure and the Precise-C backend. Karen Zee implemented stop and
copy and mark and sweep garbage collectors, which facilitated the development of no-
heap real-time threads. Hans Boehm, Alan Demers, and Mark Weiser implemented
the conservative garbage collector which was used for all of the listed benchmarks.
Alex Salcianu tailored his escape analysis to verify the correctness of our Real-Time
Java benchmarks with respect to scoped memory assignment violations. Brian Dem-
sky implemented a user-threads package for the Flex compiler which improved the
performance of some benchmarks. Victor Kuncak, the research paper fairy, bestowed
interesting, relevant, and useful related work on my desk in the middle of the night.
Peter Beebee, my brother, gave me the idea for a multiple-stack recycling heap based
on reference counts, which eventually became the reference count memory allocator.
Finally, I would like to acknowledge the support of Martin Rinard, my advisor, during
the entire year it took to produce this work, from initially finding a problem to tackle,
through the multiple failed implementations and final success, to the insightful and

plentiful comments on drafts of this thesis. Thanks for always being there.

Contents

1 Introduction 11
1.1 Threads and Garbage Collection 12
1.2 Implementation 13
1.3 Debugging e 13

2 Related Work 15

3 Programming model 19
3.1 Entering and Exiting Memory Areas 19
3.2 Scoped Memories 20
3.3 No-Heap Real-Time Threads 21

4 Implementation 23
4.1 Data Structures 24

4.1.1 Memory Areao 25
4.1.2 Memory Area Shadow 25
4.1.3 Allocation Data Structure 25
4.1.4 List Allocator 27
4.1.5 Block Allocatoro 28
4.1.6 Real-Time Thread 28
4.1.7 Memory Area Stacko 28
4.2 General Implementation Techniques 28
4.2.1 Atomic operationso 30

4.2.2 Reference Count Memory Area
4.3 Overviewof Events Lo
4.4 Constructing a memory area object
4.5 Entering the memory area L.
4.6 Memory Allocation
4.6.1 Memory Allocation Algorithms
4.6.2 Allocating Memory Outside the Current Memory Area
4.7 Garbage Collectiono
4.8 Runtime Checks oo
4.8.1 Heap Reference Check Implementation
4.8.2 Assignment Check Implementation
4.9 Exiting the memory area L oL
4.10 The memory object becomes inaccessable
4.11 Implementation Nuances
4.11.1 The memory area stack
4.11.2 Memory area accessability and lifetime
4.11.3 Thread-local state implementations beware

4.11.4 Fixed-size memory areas

Developing Real-Time Java Programs

5.1 Imncremental Debugging L o000
5.2 Additional Runtime Debugging Information
5.3 Interaction With the Debugging System
5.4 Experience With the Sun JDK

Results
6.1 Assignment Checks Lo Lo
6.2 Heap Reference Checks

Conclusion

Future Work

59
99
60
61
61

63
65
70

75

79

List of Figures

Data structures associated with the life cycle of an LTMemory 26
Data structures associated with a VI'Memory or ImmortalMemory . 29
Data structures associated with a HeapMemory 29
Emitted Code For Heap Reference Checks 45
The heapCheck function 46
Emitted Code for Assignment Checks 46
Code for performing assignment checks 47

List of Tables

6.1
6.2
6.3
6.4
6.5
6.6
6.7

Number of Objects Allocated In Different Memory Areas 64
Number of Arrays Allocated In Different Memory Areas. 64
Assignment Counts 66
Execution Times of Benchmark Programs 67
Heap Check Counts 71
Heap Reference Counts 72
Overhead of Heap Reference Checks 72

10

Chapter 1

Introduction

Java is a relatively new and popular programming language. It provides a safe,
garbage-collected memory model (no dangling references, buffer overruns, or memory
leaks) and enjoys broad support in industry. The goal of the Real-Time Specification
for Java [3] is to extend Java to support key features required for writing real-time
programs. These features include support for real-time scheduling and predictable
memory management.

This paper presents our experience implementing the Real-Time Java memory
management extensions. The goal of these extensions is to preserve the safety of
the base Java memory model while giving the real-time programmer the additional
control that he or she needs to develop programs with predictable memory system
behavior. In the base Java memory model, all objects are allocated out of a single
garbage-collected heap, raising the issues of garbage-collection pauses and unbounded
object allocation times.

Real-Time Java extends this memory model to support two new kinds of memory:
immortal memory and scoped memory. Objects allocated in immortal memory live
for the entire execution of the program. The garbage collector scans objects allocated
in immortal memory to find (and potentially change) references into the garbage
collected heap but does not otherwise manipulate these objects.

Each scoped memory conceptually contains a preallocated region of memory that

threads can enter and exit. Once a thread enters a scoped memory, it can allocate

11

objects out of that memory, with each allocation taking a predictable amount of
time. When the thread exits the scoped memory, the implementation deallocates all
objects allocated in the scoped memory (but not necessarily the memory associated
with the memory area) without garbage collection. The specification supports nested
entry and exit of scoped memories, which threads can use to obtain a stack of active
scoped memories. The lifetimes of the objects stored in the inner scoped memories are
contained in the lifetimes of the objects stored in the outer scoped memories. As for
objects allocated in immortal memory, the garbage collector scans objects allocated in
scoped memory to find (and potentially change) references into the garbage collected
heap but does not otherwise manipulate these objects.

The Real-Time Specification for Java [3] uses dynamic assignment checks to pre-
vent dangling references and ensure the safety of using scoped memories. If the
program attempts to create either 1) a reference from an object allocated in the heap
to an object allocated in a scoped memory or 2) a reference from an object allocated
in an outer scoped memory to an object allocated in an inner scoped memory, the

specification requires the implementation to throw an exception.

1.1 Threads and Garbage Collection

The Real-Time Java thread and memory management models are tightly intertwined.
Because the garbage collector may temporarily violate key heap invariants, it must be
able to suspend any thread that may interact in any way with objects allocated in the
garbage-collected heap. Real-Time Java therefore supports two kinds of threads: real-
time threads, which may access and refer to objects stored in the garbage-collected
heap, and no-heap real-time threads, which may not access or refer to these objects.
No-heap real-time threads execute asynchronously with the garbage collector; in par-
ticular, they may execute concurrently with or suspend the garbage collector at any
time. On the other hand, the garbage collector may suspend real-time threads at any
time and for unpredictable lengths of time.

The Real-Time Specification for Java [3] uses dynamic heap reference checks to

12

prevent interactions between the garbage collector and no-heap real-time threads. If
a no-heap real-time thread attempts to manipulate a reference to an object stored
in the garbage-collected heap, the specification requires the implementation to throw
an exception. We interpret the term “manipulate” to mean read or write a memory
location containing a reference to an object stored in the garbage collected heap, or

to execute a method with such a reference passed as a parameter.

1.2 Implementation

The primary complication in the implementation is potential interactions between
no-heap real-time threads and the garbage collector. One of the basic design goals
in the Real-Time Specification for Java [3] is that the presence of garbage collection
should never affect the ability of the no-heap real-time thread to run. We devoted a
significant amount of time and energy working with our design to convince ourselves
that the interactions did in fact operate in conformance with the specification.

The possibility of dead-locks or unacceptable pauses in no-heap real-time threads
associated with the use of blocking locks led to the ubiquitous use of non-blocking
synchronization primitives as a substitute for blocking locks. Developing non-blocking
algorithms to avoid race conditions which result in inconsistent shared state required

significant time and energy.

1.3 Debugging

We found it difficult to use scoped and immortal memories correctly, especially in
the presence of the standard Java libraries, which were not designed with the Real-
Time Specification for Java [3] in mind. We therefore found it useful to develop
some debugging tools. These tools included a static analysis which finds incorrect
uses of scoped memories and a dynamic instrumentation system that enabled the

implementation to print out information about the sources of dynamic check failures.

13

14

Chapter 2

Related Work

Christiansen and Velschow suggested a region-based approach to memory manage-
ment in Java; they called their system RegJava [5]. They found that fixed-size re-
gions have better performance than variable-sized regions and that region allocation
has more predictable and often better performance than garbage collection. Static
analysis can be used to detect where region annotations should be placed, but the
annotations often need to be manually modified for performance reasons. Compiling
a subset of Java which did not include threads or exceptions to C++, the RegJava
system does not allow regions to coexist with garbage collection. Finally, the RegJava
system permits the creation of dangling references.

Gay and Aiken implemented a region-based extension of C called C@Q which used
reference counting on regions to safely allocate and deallocate regions with a mini-
mum of overhead [1]. Using special region pointers and explicit deleteregion calls,
Gay and Aiken provide a means of explicitly manipulating region-allocated memory.
They found that region-based allocation often uses less memory and is faster than tra-
ditional malloc/free-based memory management. Unfortunately, counting escaping
references in C@ can incur up to 16% overhead. Both Christiansen and Velschow and
Gay and Aiken explore the implications of region allocation for enhancing locality.

Gay and Aiken also produced RC [2], an explicit region allocation dialect of C, and
an improvement over CQ. RC uses heirarchically structured regions and sameregion,

traditional, and parentptr pointer annotations to reduce the reference counting

15

overhead to at most 11% of execution time. Using static analysis to reduce the number
of safety checks, RC demonstrates up to a 58% speedup in programs that use regions
as opposed to garbage collection or the typical malloc and free. RC uses 8KB aligned
pages to allocate memory and the runtime keeps a map of pages to regions to resolve

regionof calls quickly. Regions have a partial order to facilitate parentptr checks.

Region analysis seems to work best when the programmer is aware of the analysis,
indicating that explicitly defined regions which give the programmer control over stor-
age allocation may lead to more efficient programs. For example, the Tofte/Talpin
ML inference system required that the programmer be aware of the analysis to guard
against excessive memory leaks [10, 1]. Programs which use regions explicitly may
be more hierarchically structured with respect to memory usage by programmer de-
sign than programs intended for the traditional, garbage-collected heap. Therefore,
Real-Time Java uses hierarchically-structured, explicit, reference-counted regions that
strictly prohibit the creation of dangling references.

The Tofte/Talpin approach uses a single stack of regions to allocate memory [10, 5].
Allocating memory in a single stack of regions facilitates static inference of the con-
taining region for each object based on lexical analysis of a single threaded program.
Unfortunately, simply extending this approach to multi-threaded programs may cause
memory leaks. If two threads share the same region, the region must be located at

the top of the stack and live for the duration of the program [11].

Contaminated garbage collection uses stacks of regions and dynamic region in-
ference instead of static region inference [4]. An assignment of a field of an object
contained in a region with a longer lifetime to point to an object contained in a
region with a shorter lifetime can cause the object allocated in the region with a
shorter lifetime to be moved to the region with a longer lifetime. Thus, the assign-
ment “contaminates” the object by lifting it to a region higher on the stack. The
garbage collector places objects accessable from multiple threads in a region with a

lifetime of the entire program [4].

Our system has a need for a shared, recyclable memory accessible to multiple

threads. We implement this memory by counting the number of times a thread enters

16

a memory area minus the number of times a thread exits a memory area. If this count
is zero, our implementation deallocates the objects contained in the memory area. We
allow threads to allocate memory from any memory area on a thread’s memory area
stack provided that the memory area is accessable from the current execution point.
Multiple threads can share the memory areas entered by the parent thread.

Our research is distinguished by the fact that Real-Time Java is a strict superset
of the Java language; any program written in ordinary Java can run in our Real-Time
Java system. Furthermore, a Real-Time Java thread which uses region allocation
and/or heap allocation can run concurrently with a thread from any ordinary Java
program, and we support several kinds of region-based allocation and allocation in a

garbage collected heap in the same system.

17

18

Chapter 3

Programming model

Because of the proliferation of different kinds of memory areas and threads, Real-Time

Java has a fairly complicated programming model for memory areas.

3.1 Entering and Exiting Memory Areas

Real-Time Java provides several kinds of memory areas: scoped memory, immortal
memory, and heap memory. Each thread maintains a stack of memory areas; the
memory area on the top of the stack is the thread’s default memory area. When the
thread creates a new object, it is allocated in the default memory area unless the
thread explicitly specifies that the object should be allocated in some other memory
area. If a thread uses this mechanism to attempt to allocate an object in a scoped
memory, the scoped memory must be present in the thread’s stack of memory areas.
No such restriction exists for objects allocated in immortal or heap memory.

Threads can enter and exit memory areas. When a thread enters a memory area,
it pushes the area onto its stack. When it exits the memory area, it pops the area
from the stack. There are two ways to enter a memory area: start a parallel thread
whose initial stack contains the memory area, or sequentially execute a run method
that executes in the memory area. The thread exits the memory area when the run
method returns.

The programming model is complicated somewhat by the fact that 1) a single

19

thread can reenter a memory area multiple times, and 2) different threads can enter
memory areas in different orders. Assume, for example, that we have two scoped
memories A and B and two threads T and S. T can first enter A, then B, then A
again, while S can first enter B, then A, then B again. The objects in A and B are
deallocated only when T exits A, then B, then A again, and S exits B, then A, then
B again. Note that even though the programming model specifies nested entry and
exit of memory areas, these nested entries and exits do not directly translate into a

hierarchical inclusion relationship between the lifetimes of different memory areas.

3.2 Scoped Memories

Scoped memories, in effect, provide a form of region-based memory allocation. They
differ somewhat from other forms of region-based memory allocation [2] in that each
scoped memory is associated with one or more computations (each computation is typ-
ically a thread, but can also be the execution of a sequentially invoked run method),
with all of the objects in the scoped memory deallocated when all of its associated
computations terminate.

The primary issue with scoped memories is ensuring that their use does not create
dangling references, which are references to objects allocated in scoped memories that
have been deallocated. The basic strategy is to use dynamic assignment checks to
prevent the program from creating a reference to an object in a scoped memory from
an object allocated in either heap memory, immortal memory, or a scoped memory
whose lifetime encloses that of the first scoped memory. Whenever a thread attempts
to store a reference to a first object into a field in a second object, an assignment

check verifies that:

If the first object is allocated in a scoped memory, then the second object
must also be allocated in a scoped memory whose lifetime is contained in

the lifetime of the scoped memory containing the first object.

The implementation checks the containment by looking at the thread’s stack of scoped

memories and checking that either 1) the objects are allocated in the same scoped

20

memory, or 2) the thread first entered the scoped memory of the second object be-
fore it first entered the scoped memory of the first object. If this check fails, the
implementation throws an exception.

Let’s consider a quick example to clarify the situation. Assume we have two scoped
memories A and B, two objects O and P, with O allocated in A and P allocated in B,
and two threads T and S. Also assume that T first enters A, then B, then A again,
while S first enters B, then A, then B again. Now T can store a reference to O in
a field of P, but cannot store a reference to P in a field of O. For S, the situation is

reversed: S cannot store a reference to O in a field of P, but can store a reference to

P in a field of O.

3.3 No-Heap Real-Time Threads

No-heap real-time threads have an additional set of restrictions; these restrictions
are intended to ensure that the thread does not interfere with the garbage collector.
Specifically, the Real-Time Specification for Java [3] states that a no-heap real-time
thread, which can run asynchronously with the garbage collector, “is never allowed to
allocate or reference any object allocated in the heap nor is it even allowed to manip-
ulate the references to objects in the heap.” Our implementation uses five runtime
heap reference checks to ensure that a no-heap real-time thread does not interfere
with garbage collection by manipulating heap references. The implementation uses
three of these types of checks, CALL, METHOD, and NATIVECALL to guard
against poorly implemented native methods or illegal compiler calls into the runtime.
These three checks can be removed if all native and runtime code is known to operate

correctly.

e CALL: A native method invoked by a no-heap real-time thread cannot return

a reference to a heap allocated object.

¢ METHOD: A Java method cannot be passed a heap allocated object as an

argument while running in a no-heap real-time thread.

21

e NATIVECALL: A compiler-generated call into the runtime implementation
from a no-heap real-time thread cannot return a reference to a heap allocated

object.

e READ: A no-heap real-time thread cannot read a reference to a heap allocated

object.

e WRITE: As part of the execution of an assignment statement, a no-heap real-

time thread cannot overwrite a reference to a heap allocated object.

22

Chapter 4

Implementation

In this chapter, we identify the seven data structures central to the allocation sys-
tem, develop general implementation techniques for non-blocking synchronization and
managing a globally-accessible, recycling memory area with real-time performance
guarantees, describe the events that the system handles, and elaborate on the limi-
tations and nuances of the implementation imposed by the specification.

We first describe the seven major data structures that participate in memory
management: the memory area, memory area shadow, allocation data structure, list
allocator, block allocator, real-time thread, and memory area stack. We describe
the purposes for their thirty-one component parts. Since the memory management
system shares and updates the component parts between multiple threads and cannot
use blocking locks, it requires non-blocking synchronization.

Then we present general implementation techniques to handle non-blocking syn-
chronization, including: non-blocking synchronization primitives, optimistic synchro-
nization, status variables, and atomic handshakes. We describe the reference count
memory allocator, which uses non-blocking synchronization techniques to manage
memory for the data structures which manage memory and handle multiple events in
the allocation system.

Then we describe each of the events that can occur within the system: constructing
a memory area, entering it, allocating memory, collecting garbage, checking for illegal

heap references in no-heap real-time threads or illegal assignments, exiting a memory

23

area, and finalizing data structures. The specification constrains the implementation
of these events.

Finally, we describe the problems and limitations created by the specification.
The stack of memory areas cannot just be an annotated call stack. Objects may be
accessable, but the memory areas that contain them may not be accessable. Thread
local state implementations of the specification may run into trouble. The fixed-
size of performance-bounded memory areas may limit the portability of real-time
libraries. With further research and specification development, libraries, programs,

and Real-Time Java implementations may surmount these limitations.

4.1 Data Structures

Our Real-Time Java implementation uses seven data structures to manage memory:

e Memory area: This object represents a region of memory from which the pro-

gram can allocate objects.

e Memory area shadow: This object is a clone of the original memory area object
allocated from immovable memory. It provides a means to access data from a
heap-allocated memory area object during the execution of a no-heap real-time

thread for the purpose of checking the legality of an assignment.

e Allocation data structure: This data structure is a memory area-independent
interface for allocating memory in a memory area, finding the roots into the

garbage-collected heap, and finalizing objects allocated in a memory area.

e List allocator: This data structure stores the Java objects allocated by the

variable-time allocator in a linked list.

e Block allocator: This data structure stores the Java objects allocated by the

linear-time allocator in a stack.

e Real-time thread: This object shows the portion of real-time threads which

interact with the Real-Time Java memory allocation system.

24

e Memory area stack: This object stores previously entered memory areas in a

linked list.

4.1.1 Memory Area

The memory area object represents a region of memory which the program can use

to allocate objects. The memory area object has five parts:
e finalizer: This function deallocates structures associated with this memory area.

e initial size: This integer specifies the amount of memory committed in the

constructor of the memory area.

e maximum size: This integer specifies the maximum amount of memory this

memory area can allocate.

e allocation data structure: This data structure provides the capability of allo-

cating memory in the memory area.

e shadow: This object is a no-heap real-time thread accessable version of this

IMemory area.

4.1.2 Memory Area Shadow

The shadow is a clone of a memory area, accessable from no-heap real-time threads
which can be finalized by the original memory area finalizer. Thus, the shadow has
the same lifetime as the original memory area. The shadow pointer of a shadow points

to itself to indicate that it is the shadow of the original memory area.

4.1.3 Allocation Data Structure

The allocation data structure provides a memory area non-specific interface to allocate
and manage the memory associated with a memory area. The structure has nine

parts:

25

Memory area Allocation data structure

finalizer reference count
initial size finalizer
maximum size entry count

allocation data structure
shadow

allocation data area
| alternative allocation data area

Y

Memory area shadow

data area object finalizer
allocator-specific finalizer
find roots for garbage collector

finalizer allocate memory
initial size
maximurm size List allocator
allocation data structure
shadow ~ 1B 1B |
U object object object
Real-time thread Block allocator

allocation data structure
current memory area
stack thread entry point
top of stack

begin
end
free \

Memory area stack

reference count reference count reference count reference count
finalizer finalizer finalizer finalizer
memory area memory area memory area memory area
next > next > next > next

26

Figure 4-1: Data structures associated with the life cycle of an LTMemory

reference count: This integer determines when to deallocate the allocation data

structure.

finalizer: This function determines how to finalize allocation data structures in

general.

entry count: This integer stores the difference between the number of times a
thread entered this memory area and the number of time a thread exited this
memory area. When the entry count is zero, our Real-Time Java implementa-

tion finalizes the objects in the memory area.
allocation data area: This pointer is storage for the function to allocate memory.

alternative allocation data area: This pointer is alternative storage used by a

second allocator for this memory area.

data area object finalizer: This function finalizes the objects in the memory

area.

allocator-specific finalizer: This function determines how to deallocate the allo-

cation and alternative allocation data areas.

function to find garbage collector roots: This function collects heap references

in the memory area to add to the garbage collector rootset.

function to allocate memory: This function allocates memory for new objects

from the allocation data areas.

4.1.4 List Allocator

The list allocator data structure is a linked list of Java objects allocated by the

variable-time allocator. The variable-time allocator can call malloc and atomically

add a new object to the beginning of the list. Immortal memory areas, variable-time

allocation memory areas, and even linear-time allocation memory areas use the list

allocator data structure to allocate memory. The linear-time allocation memory areas

27

only use the variable-time allocator for allocation of data if the size requested cannot

be allocated by the block allocator.

4.1.5 Block Allocator

The block allocator data structure is a fixed-size stack of memory used by the linear-
time allocator to allocate Java objects. The begin, free, and end pointers point
to the beginning of the block, the first free byte of storage, and the end of the
block respectively. The linear-time allocation memory area uses the block allocator
data structure to store objects allocated in the memory initially committed by the

constructor of the linear-time allocation memory area.

4.1.6 Real-Time Thread

The real-time thread keeps track of the current memory area, a history of all memory
areas entered since the start of the thread (thread stack entry point), a pointer to the
memory area stack frozen at the beginning of the thread’s execution, and a pointer

to the current allocation data structure to facilitate memory allocation.

4.1.7 Memory Area Stack

The memory area stack has a reference count and a finalizer to determine when and
how this memory area stack object should be deallocated. The memory area pointer
points to an active memory area, and the next pointer points to the next item in the
memory area stack. The memory area of the next memory area stack object is the

parent memory area of the memory area of this memory area stack object.

4.2 General Implementation Techniques

The requirements of the Real-Time Specification for Java [3] regarding interactions be-

tween the garbage collector, real-time threads, and no-heap real-time threads restrict

28

Memory area Allocation data structure

finalizer reference count
initial size finalizer
maximum size entry count
allocation data structure allocation data area
shadow | alternative allocation data area
+ data area object finalizer
Memory area shadow allocator-specific finalizer
find roots for garbage collector
finalizer allocate memory
initial size
maximum size List alocator
allocation data structure
shadow ~ 1B 1B |
U object object object

Figure 4-2: Data structures associated with a VI Memory or ImmortalMemory

Memory area Allocation data structure

finalizer reference count

initial size finalizer

maximum size entry count

allocation data structure allocation data area

shadow | alternative allocation data area

+ data area object finalizer
Memory area shadow allocator-specific finalizer
find roots for garbage collector
finalizer allocate memory
initial size

maximum size
allocation data structure

shadow ~

)

Figure 4-3: Data structures associated with a HeapMemory

29

the space of correct implementations. The development of general implementation

techniques used liberally throughout the implementation expedited development.

4.2.1 Atomic operations

The Real-Time Specification for Java [3] permits memory allocation from the same
memory area from multiple threads. Therefore, multiple threads possibly running on
different processors must share a single mutable resource. The standard approach to
manage a single mutable resource shared between threads is to use blocking locks.
Only one thread can use the resource at a time, and all other threads which need
the resource must wait until the thread finishes using the resource. Unfortunately,
the use of blocking locks in the allocation system may cause unintended interactions
between no-heap real-time threads, the garbage collector, and real-time threads. We
avoid this problem by using non-blocking synchronization. We identify four standard
non-blocking approaches to managing shared resources: non-blocking synchronization
primitives, optimistic synchronization, status variables, and atomic handshakes. [6]
Our implementation uses three of the four approaches, since the success of atomic
handshakes may depend on the number of processors or the thread scheduling algo-
rithm. The implementation did not require atomic handshakes, so we chose not to
constrain the use of our system unnecessarily.

To see how the use of blocking locks in a Real-Time Java memory allocator can
cause problems, consider that to allocate memory, the memory allocator manipulates
allocation state shared between multiple threads. The allocator must update the
shared state atomically, or multiple concurrent updates could cause inconsistencies in
the allocator state. The standard solution is to obtain a lock to block all other threads
from allocating memory, update the state, then release the lock. Unfortunately, the
standard solution does not work. To see what happens if threads block during allo-
cation, consider the following scenario. A real-time thread starts to allocate memory,
acquires the lock, is suspended by the garbage collector, which is then suspended
by a no-heap real-time thread that also attempts to allocate memory from the same

allocator. This is an example of a general problem known as priority inversion, but

30

the standard solution, priority inheritance, will not work. The scheduler cannot raise
the priority of the blocking thread to that of the thread being blocked, since attempts
to run the real-time thread fail because the garbage collector is in the middle of a
collection and the heap may be in an inconsistent state. Unless the implementation
does something clever, it could either deadlock or force the no-heap real-time thread
to wait until the garbage collector releases the real-time thread to complete its mem-
ory allocation. Therefore, blocking locks held between real-time threads and no-heap
real-time threads can be problematic. Faced with this problem, we used non-blocking

synchronization primitives instead of blocking locks.

Non-blocking synchronization primitives can help avoid race conditions. For ex-
ample, the implementation uses an atomic add and exchange instruction to increment
or decrement a reference count and return the previous value of the reference count
(to determine whether the reference-counted object was in use). The linear time
allocator uses the same instruction to add an offset to a stack pointer and return
a pointer to the allocated memory. Non-blocking synchronization primitives work
in this example, but notice that the problem involves contention for only a single,
pointer-sized memory location. In general, non-blocking synchronization primitives

can only resolve contention for a single, pointer-sized memory location.

Optimistic synchronization can resolve contention for more than a single pointer-
size location. The basic approach is to assume optimistically that a condition is true,
perform a computation based on that assumption, and atomically retest the initial
condition before committing changes. An atomic compare and exchange can retest
the initial condition atomically before a destructive mutation occurs. If the initial
condition that was true at the beginning of the computation is no longer true by
the end of the computation, the computation can be aborted before the erroneous
results affect other computations. For example, when adding an object to the front
of a linked list, the compare and exchange instruction first tests that the next pointer
has been properly set to the previous front of the linked list before setting the front
to point to the new item. If the operation fails, the system retries it. Optimistic

synchronization works in this example, but assumes infrequent contention for the

31

shared resource during any operations performed on it.

Status variables can be useful if contention is potentially widespread and long last-
ing. Complex operations such as setting multiple stack pointers atomically consist of
simpler operations, each associated with a different status. The program updates the
status variable using non-blocking synchronization primitives to represent the current
status of the operation. Using status variables, many thread can make progress on a
single computation without blocking. Since the status variable can change after the
thread reads it, status variables can indicate that certain steps of the complex opera-
tion have already been performed, but cannot indicate that other operations have not
been performed. Status variables can be used in conjunction with optimistic synchro-
nization to ascertain the true status of the computation atomically before committing
changes and then conditionally updating the status atomically. If every thread must
finish the complex operation before using its results, then the desirable effects of
atomicity with respect to complex operations can be obtained without blocking. For
example, when updating three stack pointers atomically in order, first set the status
to one. If the status is one, atomically test for the old value of the first stack pointer
and update it with the new value. Atomically test for a status of one and set the
status to two. If the status is two, atomically test for the old value of the second
stack pointer and update it with a new value. Atomically test for a status of two and
set the status to three. If the status is three, atomically test and change the third
stack pointer. Atomically test for a status of three and set the status to four. If the
status is four, all three stack pointers are up to date. The above approach is very ro-
bust against potentially great contention for a shared resource. Unfortunately, status
variables alone can only indicate which operations have already been performed, not

which operations are pending.

Atomic handshakes between threads can be useful if a potentially large amount
of information must be passed from one thread to another thread atomically. Typi-
cally one thread announces a condition using non-blocking synchronization primitives.
When the other thread notices the condition it stores the required information in a

shared space and announces an acknowledgement using non-blocking synchroniza-

32

tion primitives. When the first thread notices the acknowledgement, it retrieves the
information from the shared space. On-the-fly garbage collectors such as the DLG
garbage collector [6], used in multi-processor Java implementations, use handshakes
between program threads and the garbage collector thread to atomically transfer
the rootset. Unfortunately, atomic handshakes depend on the concurrent execution
of the two threads. If the thread scheduler runs the first thread to completion be-
fore the second thread runs, no handshakes between the threads can succeed. Thus,
atomic handshakes depend on parallel scheduling of the handshakes or a small time
quanta for context switches between the handshaking threads. Our Real-Time Java
implementation does not use atomic handshakes, since our implementation makes no
assumptions about the thread scheduler or number of processors, and we chose not

to constrain the use of our system unnecessarily.

4.2.2 Reference Count Memory Area

To enable a thread to allocate at any point during its execution, the Real-Time
Java system must be capable of accessing the state necessary for allocation from any
method running in any type of thread after entering any type of memory area. When
we developed the allocation system, we had to figure out where to store the allocation
state. Potential candidates included the memory areas. Note that only one type of
memory area can contain objects that the allocation system can access or modify at
any point during program execution, the immortal memory area. Unfortunately, the
allocation system cannot deallocate objects allocated in an immortal memory area.
So, we invented our own type of memory area which can allocate objects that the
program can access from anywhere, and deallocate objects when they are no longer
needed. We explain the reason for this below.

We first expand on why immortal memory areas cannot fulfill the needs of our
implementation. For example, memory areas allocate stack objects when entered.
Without some recycling scheme, this memory leak could result in an out of memory
error. Even if some recycling scheme were in place, once the allocation system al-

locates an object from immortal memory, the system can never deallocate it. The

33

system would retain storage for the maximum number of stack objects that were
used at one time for the entire length of the program, and could not reuse that mem-
ory for other objects. The Real-Time Java thread scheduling algorithm must access
and mutate a thread list and the garbage collector must access the state associated
with memory areas from potentially any step during program execution. Both could

benefit from the ability to deallocate storage.

We therefore introduce a new kind of memory area, called a reference count mem-
ory area, which fills our implementation’s need for a globally-accessable, recycling
memory area where the memory area cannot move objects while in use, but can
deallocate them using a pause-free, non-blocking, non-locking memory manager. Al-
location does not have any time guarantees, but all assignments must take at most
constant time (on a single processor). The program must break cycles either in or
through a reference count memory area. (Static analysis can prove some programs to
not contain cycles.) Conceptually, the reference count memory area counts references
to each object it contains. For example, when the program changes a field of object
A, from pointing to object B, to point to object C, the reference count memory area
decrements the reference count of B and increments the reference count of C. When
the reference count of an object reaches zero, the reference count memory area may

finalize the object and deallocate the storage associated with it.

The reference count memory area uses a reference count memory allocator to al-
locate memory. A reference count allocator can allocate an object, increment the
object’s reference count, decrement the object’s reference count, possibly freeing the
object if the count becomes zero, and iterate through the active objects. All four
operations can be performed simultaneously by different threads; any set of instruc-
tions from any of the operations can be interleaved with any set of instructions from
any other operations. A reference count memory allocator cannot use locks, since the
priorities of the individual threads cannot be changed. Also, no thread can block;
every thread must always be able to make forward progress regardless of the state of
any other thread. Finally, incrementing and decrementing reference counts must take

a (small) constant amount of time (on a single processor), since assignments may be

34

frequent in Java [|.

In general, decomposing problems in time or space that seem to require multiple
concurrent updates to occur atomically in a non-blocking fashion may yield non-
blocking synchronization primitives and a simplified implementation. The use of
status variables decomposes synchronization problems in time. The use of multiple
stacks decomposes synchronization problems in space. The reference count allocator

decomposes the problem in space using multiple stacks.

Conceptually, a reference count memory allocator can be implemented using five
stacks. The first stack contains live objects with a non-zero reference count that are
currently in-use by the user program, the garbage collector, or any other procedure
which may be iterating through them. The second stack contains all the live ob-
jects and some recently-dead objects. The third stack contains objects waiting to be
deallocated, but may have iterators, such as the garbage collector or the debugging
system, actively iterating through them. The fourth stack contains objects waiting
to be deallocated that no iterator is currently iterating through. The fifth stack rep-
resents free space. A new object is allocated out of the fifth stack and placed on the
first (and second) stack. If the object’s reference count drops to zero, the allocator
immediately removes the object from the first stack, leaving it only on the second
stack. The allocator later moves the object to the third stack and removes it from
the second stack. When no iterators are currently iterating through active objects,
the third stack can be moved to the fourth stack and the third stack can be cleared.
The objects from the fourth stack can then be safely deallocated to the fifth stack at
any time.

Our implementation of a reference count allocator, which deallocates an object
when its reference count becomes zero, stores the reference count as part of an object’s
header. The object’s header also contains a pointer to the next object to form a linked-
list of objects that can be scanned during garbage collection. Thus, the reference
count and the linked list implement the first and second stacks. An object with a
non-zero reference count is conceptually on the first and second stacks. When the

object’s reference count drops to zero, it is conceptually only on the second stack,

35

in the sense that a procedure iterating over the elements will skip any object with a
zero reference count. A separate linked list of free objects implements the third stack.
When an iterator reference count becomes zero, the free objects can be moved to a
linked list of collectable objects which implements the fourth stack. The fifth stack

simply represents the heap, as managed by malloc and free.

4.3 Overview of Events

The events in the the life cycle of a memory area demonstrate the rest of the imple-

mentation of the Real-Time Java allocation system:
e Constructing a memory area object
e Entering the memory area
e The current thread allocates memory for an object.
e The garbage collector scans the memory area.
e The current thread performs a heap reference check.
e The current thread performs an assignment check.
e The current thread exits the memory area.

e The memory area object becomes inaccessable.

4.4 Constructing a memory area object

Any thread can create an instance of a memory area in any of its active memory
areas, initializing it with an optional initial size and maximum size. If the thread
specifies no size for the memory area, then the amount of memory that the memory
area can allocate is limited only by available memory. A linear time scoped memory
area must have a specified initial size to ensure linear time allocation, but a variable

time scoped memory area does not. The Real-Time Specification for Java [3] specifies

36

that variable time scoped memory areas must have an initial size and a maximum
size. Since our implementation permits either fixed or variable-sized memory areas,
it is more general than the Real-Time Specification for Java. [3]

The constructor for memory areas calls a native method to set up the allocation
data structure and associates it with the memory area by performing the following

steps:

e The method allocates the memory associated with the memory area and an

allocation data structure which points to it.

e The method inflates the memory area object by allocating memory associated
with the memory area object for an additional field known only to the runtime.

It stores a pointer to the allocation data structure in the inflated object.

e The method initializes the entry count to either zero or one depending on
whether the memory area objects should be finalized by the Real-Time Java
memory allocation system or not. For instance, immortal memory areas start
with an entry count of one, since objects allocated in the area live for the du-
ration of the program. Heap memory areas also start with an entry count of
one, since the objects are finalized by the garbage collector, not the Real-Time
Java system. All scoped memory areas have an entry count initialized to zero,
since finalization of the contained objects occurs when all threads have exited

the memory area.

e The method stores pointers in the allocation data structure to functions which
can allocate objects, find the roots for the garbage collector, finalize all objects
in the memory area, and deallocate storage for any memory area specific data

areas and initial storage allocated in the native method.

e If no-heap real-time thread support is enabled and the memory area object
was allocated in heap memory, a native method allocates a shadow (clone) of
the memory area outside garbage-collected space. The shadow prevents a no-

heap real-time thread from illegally accessing the heap when examining a heap-

37

allocated memory area that allocated a non-heap allocated object to determine
the legality of an assignment between two memory areas. The shadow does not
contain any pointers to any heap allocated objects, so it can just be allocated

with malloc and deallocated with free when the memory area finalizer runs.

The system has initialized the memory area state, so the program can now enter the

memory area.

4.5 Entering the memory area

A thread can enter a given memory area in three ways: 1) through the memory area’s
enter method, which does not start a new thread, 2) through starting a thread which
inherits the current default memory area for the thread that started the thread, and
3) through starting a thread after passing a memory area to the thread’s constructor.

Entering a memory area attaches the memory area to the current thread for the
duration of the invoked run method (which may either be an overriden run method
on the real-time thread or the run method of a Runnable which can be passed into
an enter method or passed into the constructor of a real-time thread. When the
run method completes, the memory area exits and the system reattaches the memory
area previously attached to the current thread. The distinctions between different
ways of entering a memory area or running a run method do not affect the core
implementation of the Real-Time Java system and we shall largely ignore them except
for cases where a specific example restricts the design space of the Real-Time Java
system.

On entering a memory area, the memory area is pushed on the memory area stack
and the memory area, memory area allocation routine, and memory area allocation

data structures are attached to the current thread as follows:

e To push a memory area on the stack, the Real-Time Java system allocates a
new immutable memory area stack object out of a reference count memory area

and stores pointers to the memory area pushed and the rest of the stack.

38

e If either the memory area or the next memory area stack object were allocated
out of a reference count memory area, the system increments the memory area

or stack object’s reference count.

e The system allocates the memory area allocation data structures out of a spe-
cial reference count memory area which is not directly scanned by the garbage
collector, to allow each memory area to provide a specialized function to scan
the data area for garbage collector roots, and to prevent infinite recursion in

the garbage collector.

e The memory area allocation data structures are attached to the current thread
by inflating the thread object and storing a pointer from the inflated thread to

a top-level structure.
e Finally, the thread increments the memory area’s entry count.

Since the allocation data structure is attached to the current thread, the program can

now allocate memory in the entered memory area.

4.6 Memory Allocation

Memory can be allocated in different ways, and the current allocator can be different
for different threads and change over time, yet the overhead of finding the correct
memory allocation function must be kept to a small constant. Therefore, memory
allocation for all Java objects uses a function pointed to by the allocation data struc-
ture associated with the current thread. When the program creates a new object, it
finds the current thread and calls the allocation function on the allocation data struc-
ture associated with the thread. The type of the currently active memory area for
the thread determines the allocation function. Linear-time allocation memory areas,
variable-time allocation memory areas and immortal memory areas use two memory

allocators: a stack allocator and a malloc-based allocator.

39

4.6.1 Memory Allocation Algorithms

We have implemented two simple allocators for scoped memory areas: a stack al-
locator and a malloc-based allocator. The current implementation uses the stack
allocator for instances of LTMemory, which guarantee linear-time allocation, and the

malloc-based allocator for instances of VTMemory, which provide no time guarantees.

The stack allocator starts with a fixed amount of available free memory. It main-
tains a pointer to the next free address. To allocate a block of memory, it increments
the pointer by the size of the block, then returns the old value of the pointer as a
reference to the newly allocated block. Our current implementation uses this allo-
cation strategy for instances of the LTMemory class, which guarantees a linear time

allocation strategy.

Our current implementation uses a lock-free, non-blocking atomic exchange-and-
add instruction to perform the pointer updates. Note that on an multiprocessor in
the presence of contention from multiple threads attempting to concurrently allocate
from the same memory allocator, this approach could cause the allocation time to
depend on the precise timing behavior of the atomic instructions. We would expect
some machines to provide no guarantee at all about the termination time of these

instructions.

The malloc-based allocator simply calls the standard malloc routine to allocate
memory. Our implementation uses this strategy for instances of LTMemory. To provide
the garbage collector with a list of heap references, our implementation keeps a linked
list of the allocated memory blocks and can scan these blocks on demand to locate
references into the heap. The linked list uses an atomic compare and swap instruction

to add a new memory block to the front of the linked list.

Our design makes adding a new allocator easy; the malloc-based allocator re-
quired only 25 lines of C code and only 45 minutes of coding, debugging, and test-
ing time. Although the system is flexible enough to support multiple dynamically-
changing allocation routines, variable-time allocation memory areas use the malloc-

based allocator, while linear-time allocation memory areas use the stack-allocator.

40

4.6.2 Allocating Memory Outside the Current Memory Area

The memory area’s newInstance and newArray methods can allocate memory in an
arbitrary memory area that is accessable from the current memory area. The methods
use allocation information from the specified memory area without actually entering
the memory area. Since the constructor for any object created in this manner is
run in the preexisting current memory area for the current thread, newInstance and
newArray do not actually enter the specified memory area. Objects allocated through
these methods have the same lifetime as other objects allocated in the same memory

area.

4.7 Garbage Collection

References from heap objects can point both to other heap objects and to objects allo-
cated in immortal memory. The garbage collector must therefore recognize references
to immortal memory and treat objects allocated in immortal memory differently than
objects allocated in heap memory. In particular, the garbage collector cannot change
the objects in ways that that would interact with concurrently executing no-heap
real-time threads.

Our implementation handles this issue as follows. The garbage collector first scans
the immortal and scoped memories to extract all references from objects allocated
in these memories to heap allocated objects. The scan iterates through the alloca-
tion data structures allocated by the reference count memory allocator, calling each
function to find the heap references in each allocation data area. This scan is coded
to operate correctly in the presence of concurrent updates from no-heap real-time
threads. The scan iterates through a linked-list of objects. If a concurrently running
no-heap real-time thread allocates a new object after the iterator has started, the
allocator adds the new object to the beginning of the list. The iterator does not
iterate through this new object to find roots, but the new object cannot contain any
roots into garbage collected space since only no-heap real-time threads, which cannot

create or manipulate roots, have run since garbage collection began. Since the fields

41

which are roots will remain roots and the fields which are not roots will still not
point to the heap during the scan and the scan will always be able to distinguish
between roots and non-roots, the scan can properly extract the heap references from
the allocation data area. The garbage collector uses the extracted heap references as
part of its root set.

Note a potential interaction between the garbage collector and no-heap real-time
threads. The garbage collector may be in the process of retrieving the heap references
stored in a memory area when a no-heap real-time thread (operating concurrently
with or interrupting the garbage collector) allocates objects in that memory area.
The garbage collector must operate correctly in the face of the resulting changes to
the underlying memory area data structures. The system design also cannot involve
locks shared between the no-heap real-time thread and the garbage collector (the
garbage collector is not allowed to block a no-heap real-time thread). But the garbage
collector may assume that the actions of the no-heap real-time thread do not change
the set of heap references stored in the memory area.

During the collection phase, the collector does not trace references to objects al-
located in immortal memory. If the collector moves objects, it may need to update
references from objects allocated in immortal memory or scoped memories to objects
allocated in the heap. It performs these updates in such a way that it does not in-
terfere with the ability of no-heap real-time threads to recognize such references as
referring to objects allocated in the heap. Note that because no-heap real-time threads
may access heap references only to perform heap reference checks, this property en-
sures that the garbage collector and no-heap real-time threads do not inappropriately

interfere.

4.8 Runtime Checks

The implementation uses dynamic checks to ensure that no-heap real-time threads
do not interfere with the garbage collector and the program does not create dangling

references. Heap reference checks ensure that no-heap real-time threads do not ma-

42

nipulate references to the heap. Assignment checks prevent the creation of dangling
references by forbidding assignments that could cause a field of an object to point to

an object with a shorter lifetime.

4.8.1 Heap Reference Check Implementation

The implementation must be able to take an arbitrary reference to an object and
determine the kind of memory area in which it is allocated. To support this function-
ality, our implementation adds an extra field to the header of each object. This field
contains a pointer to the memory area in which the object is allocated.

One complication with this scheme is that the garbage collector may violate object
representation invariants during collection. If a no-heap real-time thread attempts to
use the field in the object header to determine if an object is allocated in the heap,
it may access memory rendered invalid by the actions of the garbage collector. We
therefore need a mechanism which enables a no-heap real-time thread to differenti-
ate between heap references and other references without attempting to access the
memory area field of the object.

We first considered allocating a contiguous address region for the heap, then check-
ing to see if the reference falls within this region. We decided not to use this approach
because of potential interactions between the garbage collector and the code in the no-
heap real-time thread that checks if the reference falls within the heap. Specifically,
using this scheme would force the garbage collector to always maintain the invariant
that the current heap address region include all previous heap address regions. We
were unwilling to impose this restriction on the collector.

We then considered a variety of other schemes, but eventually settled on the
(relatively simple) approach of setting the low bit of all heap references. The generated
code masks off this bit before dereferencing the pointer to access the object. With this
approach, no-heap real-time threads can simply check the low bit of each reference
to check if the reference points into the heap or not.

Our current system uses the memory area field in the object header to obtain

information about objects allocated in scoped memories and immortal memory. The

43

basic assumption is that the objects allocated in these kinds of memory areas will
never move or have their memory area field temporarily corrupted or invalidated.
Figure 4-4 presents the code that the compiler emits for each heap reference check;
Figure 4-5 presents the code that determines if the current thread is a no-heap real-
time thread. Note that the emitted code first checks to see if the reference is a heap
reference — our expectation is that most Real-Time Java programs will manipulate
relatively few references to heap-allocated objects. This expectation holds for our

benchmark programs (see Section 6).

4.8.2 Assignment Check Implementation

The assignment checks must be able to determine if the lifetime of a scoped memory
area A is included in the lifetime of another scoped memory area B. The implemen-
tation searches the thread’s stack of memory areas to perform this check. It first
searches for the occurrence of A closest to the start of the stack (recall that A may
occur multiple times on the stack). It then searches to check if there is an occurrence
of B between that occurrence of A and the start of the stack. If so, the assignment
check succeeds; otherwise, it fails.

The current implementation optimizes this check by first checking to see if A and
B are the same scoped memory area. Figure 4-6 presents the emitted code for the
assignment checks, while Figure 4-7 presents some of the run-time code that this

emitted code invokes.

4.9 Exiting the memory area

On exiting a memory area, the thread pops the memory area off of the memory area
stack and its associated allocation routine and data structures are attached to the
current thread. When a thread pops a memory area off of the stack, it sets the top of
memory area stack pointer to point to the next item on the memory area stack and
decrements the reference count of the previous memory area stack object. When an

object’s reference count in a reference count memory area becomes zero, the reference

44

READ WRITE
use of *refExp in exp xrefEXp = exp;
becomes: becomes:
heapRef = *refExp; heapRef = *refExp;
if (heapRef&1) if (heapRef&1)
heapCheck (heapRef) ; heapCheck (heapRef) ;
[*heapRef/*refExp| exp refExp = exp;
NATIVECALL CALL
refExp = nativecall(args); refExp = call(args);
becomes: becomes:
heapRef = nativecall(args); heapRef = call(args);
if (heapRef&1) if (heapRef&1)
heapCheck (heapRef) ; heapCheck (heapRef) ;
refExp = heapRef; refExp = heapRef;
METHOD

method (args) { body }
becomes:

method (args) {
for arg in args:
if (arg&l)
heapCheck(arg) ;
body }

Figure 4-4: Emitted Code For Heap Reference Checks

45

#ifdef DEBUG
void heapCheck(unwrapped_jobject* heapRef, const int source_line,
const char* source_fileName, const charx operation) {

#else /* operation = READ, WRITE, CALL, NATIVECALL, or METHOD */
void heapCheck(unwrapped_jobject* heapRef) {
#endif

JNIEnv* env = FNI_GetJNIEnv();

/* determine if in a NoHeapRealtimeThread */

if (((struct FNI_Thread_State*)env)->noheap) {
/* optionally print helpful debugging info */
/* throw exception */

Figure 4-5: The heapCheck function

New Object (or Array):
obj = new foo(); (or obj = new foo()[1][2][3];)
becomes:

ma = RealtimeThread.currentRealtimeThread() .getMemoryArea();
obj = new foo(); (or obj = new foo() [11[2]1[3];)
obj.memoryArea = ma;

Assignment check:
obj.foo = bar;
becomes:

ma = MemoryArea.getMemoryArea(obj);

/* or ma = ImmortalMemory.instance(), if a static field) */
ma.checkAssignment (bar) ;

obj.foo = bar;

Figure 4-6: Emitted Code for Assignment Checks

46

In MemoryArea:

public void checkAssignment(Object obj) {
if ((obj != null) && (obj.memoryArea != null) &&
obj.memoryArea.scoped) {
/* Helpful native method prints out all debugging info. */
throwIllegalAssignmentError(obj, obj.memoryArea);
}
}

Overridden in ScopedMemory:

public void checkAssignment(Object obj) {
if (obj != null) {
MemoryArea target = getMemoryArea(obj);
if ((this != target) && target.scoped &&
('RealtimeThread.currentRealtimeThread()
.checkAssignment (this, target))) {
throwIllegalAssignmentError (obj, target);

In RealtimeThread:

boolean checkAssignment(MemoryArea source, MemoryArea target) {

MemBlockStack sourceStack = (source == getMemoryArea()) ?
memBlockStack : memBlockStack.first(source) ;
return (sourceStack != null) &&
(sourceStack.first(target) != null);
}

Figure 4-7: Code for performing assignment checks

47

count memory area runs its finalizers for the object. The default finalizer for an object
in a reference count memory area traces the objects for other pointers to reference
count memory area allocated objects and decrements their references. When a thread
exits, the thread exits all memory areas entered during the duration of the thread.
If the memory area stack objects are not shared with any other thread, the reference
count memory area can reclaim the memory associated with them, thus removing any
roots to the associated memory areas from the root set sent to the garbage collector.
Also, when exiting a memory area, a thread decrements the memory area’s entry

count.

If the entry count becomes zero, then the memory area runs the finalizers for all
contained objects and resets the memory associated with them (which may involve
zeroing memory). Any attempt to reenter the memory area while the contained
objects’ finalizers are running will block until the finalizers finish, in accordance with
the Real-Time Specification for Java [3]. This blocking creates a potential danger for

the Real-Time Java programmer.

Consider the following situation. A thread exits a memory area, causing its ref-
erence count to become zero, at which point the implementation starts to invoke
finalizers on the objects in the memory area as part of the deallocation process.
While the finalizers are running, a no-heap real-time thread enters the memory area.
According to the Real-Time Java specification, the no-heap real-time thread blocks
until the finalizers finish running. There is no mention of the priority with which
the finalizers run, raising the potential issue that the no-heap real-time thread may
be arbitrarily delayed. A final problem occurs if the no-heap real-time thread first
acquires a lock, a finalizer running in the memory area then attempts to acquire the
lock (blocking because the no-heap real-time thread holds the lock), then the no-heap
real-time thread attempts to enter the memory area. The result is deadlock — the
no-heap real-time thread waits for the finalizer to finish, but the finalizer waits for

the no-heap real-time thread to release the lock.

If the entry count is zero, all user inaccessable references to the memory area

object are destroyed to help shorten the lifetime of memory area objects. If the thread

48

reenters the memory area, the thread reestablishes the references to the memory area

object.

4.10 The memory object becomes inaccessable

If the Real-Time Java implementation does not store any pointers to user-allocated
memory area objects, then the memory area objects may be garbage-collected at an
inappropriate time. The Real-Time Specification for Java [3] requires that a scoped
memory’s getOuterScope () method return a pointer to the enclosing scoped memory
of the current memory area, or to the current memory area if there is no enclosing
scope. However, the user may allocate a scoped memory area object in garbage-
collected heap memory. If the system does not keep a reference to this object (reach-
able from the garbage collector rootset), the memory area object may become inac-
cessable to the user, and the garbage collector could deallocate it. For instance, a
scoped memory area object may be referenced only by a local variable in a method.
The method may start a thread which enters the scoped memory. The thread may
enter another scoped memory later. The user may invoke the getOuterScope()
method and the object may not be found. The user may also invoke a real-time
thread’s getMemoryArea() method, which returns the current memory area even if
another memory area was entered and exited, returning to the original memory area.
Therefore, all heap-allocated memory area objects that were entered but not exited
in any thread must be kept alive with a reference to the original memory area object
that is scanned by the garbage collector, even if shadowed memory areas or unique
ID’s are used internally to avoid memory area inaccessability problems when doing
assignment checks in no-heap real-time threads.

The lifetime of a memory area should be at least the maximum of the lifetime on
the memory area stack, the lifetime of the references to it from user space, and the in-
ternal references which can be returned to user space, such as the current memory area
object attached to a particular thread which can be returned by getMemoryArea().

Linear-time allocated scoped memory commits a specified initial amount of memory

49

by the completion of the constructor, which must be available for allocation even if
all objects in the memory area have been finalized and the memory area reset. The
memory from the initial requirement cannot be reclaimed until the memory area is
no longer user-accessable and cannot be found on the memory area stack. Since the
memory area could have been heap allocated, garbage collector finalizers must run
to deallocate the storage associated with the memory area. To prevent costly mem-
ory leaks, the garbage collector and the memory area implementations must provide
support for some form of finalization (not necessarily the finalization described in
the Java Language Specification). Since immortal memory finalizers cannot be run
until the program has finished, memory areas that have a lifetime less than the entire
program should not be allocated in immortal memory. No-heap real-time threads
cannot access heap memory, so limited-lifetime scoped memory area objects used in
no-heap real-time threads should be allocated in scoped memory or reused if allocated

in immortal memory.

If the entry count is zero and the memory area object becomes inaccessable,
the memory area object finalizer decrements the allocation data structures reference
count. The memory area object finalizer also reclaims memory associated with its
shadow if the memory area object was allocated in garbage collected space, and
deflates the memory area object. When no iterator of allocation data structures, such
as the garbage collector, is currently running, then the allocation data structures with

zero reference count can be finalized.

The only reason for the allocation data structure reference count is to eliminate the
problem of the garbage collector (or any other iterator) containing a reference to the
allocation data structures for scanning purposes while the allocation data structures
are finalized and the memory associated with them are freed. Since the finalizable
allocation data structures cannot contain any live objects at this time, the garbage
collector does not need to scan any objects contained in the finalizable allocation data
structures. Therefore, any solution which ensures that the garbage collector does not
attempt to dereference a pointer to finalized allocation data structures while scanning

for roots is acceptable.

20

After the allocation data structure reference count drops to zero and no itera-
tor is scanning the allocation data structures (the reference count memory area for
allocation data structures’ iterator count is zero), the reference count memory area
for allocation data structures runs a generic allocation data structure finalizer. This
finalizer runs a memory area specific allocation data structure finalizer which can
reclaim the memory associated with the memory area. The generic allocation data

structure finalizer can then deallocate the rest of the allocation data structure.

4.11 Implementation Nuances

Although the Real-Time Specification for Java [3] consistent real-time performance,
and explicit control over memory through an approach that is backwards-compatible
with existing Java programs, it restricts the design space of the implementation and
may limit the portability of libraries offering real-time performance guarantees in the

following ways:

e Since assignment checks may require information from previous threads frozen
at the start of a new thread to determine the legality of an assignment in the
new thread, the memory area stack cannot simply be a call stack annotated

with memory areas.

e Since no-heap real-time threads cannot access heap-allocated scoped memory
area objects, an object may be accessable but the memory area which allocated
it may not. Therefore, assignment checks cannot always access the memory

area that allocated an object.

e Thread-local state implementations may be more complicated than implemen-

tations which deal with synchronization issues directly.

e Since a linear-time allocation memory area is the only type of memory area
with allocation performance guarantees, and it requires an initial memory size
to perform consistently, the Real-Time Java library developer must use com-

piler and runtime platform-specific information to ensure statically the efficient

o1

and consistent operation of real-time library functions which allocate memory
internally. The size requirement may limit the portability of libraries offering

real-time performance guarantees.

Future research may provide solutions to overcome current limitations implied by the

specification.

4.11.1 The memory area stack

The order of memory area entry provides a thread-local context for determining
whether an object in one scoped memory area can have a pointer to an object in an-
other scoped memory area. Since the assignment check relationship between scoped
memory areas is dependent on the order the scoped memory areas were entered for
the given thread, scoped memory areas can be shared between threads, and scoped
memory areas can be entered in any arbitrary order, storing a pointer to a mem-
ory area’s parent in a field of the memory area is neither sufficient for determining
the assignment relationship between scoped memory areas nor for determining which
memory area to return after exiting the current memory area.

For example, thread A enters scoped memory area one then enters scoped memory
area two. Thread B enters scoped memory area two then enters scoped memory area
one. In thread A, scoped memory area two’s parent is scoped memory area one.
In contrast, in thread B, scoped memory area one’s parent is scoped memory area
two. If thread C enters scoped memory area three then enters scoped memory area
one, which is the parent for scoped memory area one? In thread B, the parent is
scoped memory area two, but in thread C, the parent is scoped memory area three.
Therefore, the “parent” of a memory area is a thread-local concept, which can be
maintained by keeping a stack of memory areas per thread.

Since the stack of memory areas must be maintained per thread, and memory
areas are entered when a run method is executed and exited when the run method
returns, an implementor of a Real-Time Java system may be tempted to just use

thread’s call stack to keep track of the current memory area and the stack of previous

92

memory areas. Unfortunately, information from prior threads may be necessary to
determine whether a particular scoped memory to scoped memory assignment check
is valid. For example, thread A enters scoped memory area one and starts thread B
which enters scoped memory area two. Thread A then exits scoped memory area one
and enters scoped memory area two. Thread B attempts to make an assignment from
scoped memory area two to scoped memory area one. To determine the legality of
this assignment, thread B must examine not only its own call stack, but the call stack
of thread A at the time which thread B was started. If thread B examines thread A’s
current call stack, it will not find an instance of scoped memory area one (which was
replaced on the call stack by scoped memory area two), and will conclude that the
assignment is illegal, when it is in fact legal. Therefore, thread B’s memory area stack
must not only contain pointers to active memory areas entered during the execution
of thread B, but also pointers to all active previous memory areas of all threads prior

to thread B, frozen at the point of spawning the next thread.

A naive implementation may just copy the previous call stacks, making a thread-
local list of call stacks to be used in addition to the current call stack. Copying call
stacks can needlessly waste memory. For example, thread A enters scoped memory
area one and spawns thread B. Thread B enters scoped memory area two and spawns
thread C... until thread G. Thread G has seven call stacks, F has six, E has five... and
A has one. Twenty-eight call stacks have been allocated for only seven memory areas
and seven threads. If each thread maintains a singly-linked list of previous memory
areas, the threads can share portions of this list, forming a cactus stack of memory
areas. In the prior example, using a cactus stack, the Real-Time Java system would
allocate only seven memory area stack objects, each containing a pointer to a memory
area and a pointer to the next stack object, in addition to the seven thread-local call
stacks instead of twenty-eight entire call stacks each augmented with memory area

pointers.

93

4.11.2 Memory area accessability and lifetime

Unfortunately, according to the Real-Time Specification for Java [3], an object can
be accessable while its memory area may be inaccessable. For instance, an object
can be allocated out of a heap-allocated scoped memory. The object is accessable
from a no-heap real-time thread, but its memory area is not. While tracing the stack
of memory areas from a scoped memory to another scoped memory to determine
whether an assignment is possible, the Real-Time Java implementation may attempt
to dereference a pointer to a heap-allocated memory area object in a no-heap real-time
thread.

Two possible solutions to this problem are: 1) to store unique ID’s instead of
the actual memory areas internally and create maps from ID’s to the state contained
in the memory area, allocated in accessable memory areas, or 2) create a shadow
object of each heap-allocated memory area which has the same lifetime as the original
object, but is allocated in non-movable memory and contains pointers to the original,
non-movable allocator data structures. Our implementation uses the second, simpler

approach.

4.11.3 Thread-local state implementations beware

Possible dead-locks or pauses caused by the use of blocking locks held between real-
time threads, no-heap real-time threads, and the garbage collector limits memory
allocation algorithms to use only non-blocking synchronization based on primitives
which possibly have no performance guarantees at all on some multi-processor sys-
tems. Perhaps the implementation of the memory allocation system could be based on
thread-local state, avoiding all synchronization issues and multiprocessor contention,
simultaneously making implementation of allocation routines easier, permitting more
design freedom and early reclamation of some thread-local objects in memory areas,
and facilitating reuse of portions of the memory allocated for memory areas. In a
thread-local state implementation, the garbage collector may not have to scan por-

tions of memory areas associated with objects local to no-heap real-time threads,

54

further improving overall program performance.

We initially attempted a thread-local state implementation, hoping for the afore-
mentioned advantages. We created a new block every time a thread entered a memory
area. The implementation deallocated the blocks when a thread exited. To determine
the lifetime of objects allocated outside the current memory area, the implementation
scanned for an active block corresponding to the closest copy of the desired memory
area on the memory area stack and allocated the memory from that block. We failed

for the following reasons:

e Unfortunately, two threads could allocate memory in the same block, since two
threads with a common parent can share the same history of entered memory
areas. If the implementation created a new thread-local block for an object
allocated outside the current memory area, then when can the implementation

deallocate that block?

e Memory area entry counts must also be shared between threads, since otherwise
the implementation may not be able to determine when the memory area is

inactive.

e Real-time threads can store heap references in fields of objects contained in
no-heap real-time thread allocated blocks. Therefore, no-heap real-time thread

allocated blocks must be scanned by the garbage collector.

Considering the tremendous complexity of the flawed thread-local implementation
designed to avoid the complexity of dealing with possible race conditions between
threads, we decided to settle on a simpler implementation that dealt with contention

between threads directly using non-blocking synchronization.

4.11.4 Fixed-size memory areas

To determine the size of linear-time allocation memory areas, the benchmarks use in-
put from the user and crash if the program runs out of memory. This obviously cannot

be a long-term solution to determining the size of memory areas. Unfortunately, the

1)

size of objects is not specified by the Java Language Specification. Therefore, many
compilers optimize objects in different ways to increase performance, leading to differ-
ent object sizes. A programmer cannot determine a priori how much space a program

will use.

How shall a programmer determine the size of memory areas? The compiler may
be able to calculate the size of a memory area as a function of input parameters to a
method, provided that the memory area does not contain a while loop which allocates
memory and terminates depending on a condition not predictable statically (like when
a robot runs into the wall). Perhaps the memory usage of some portions of a program
can be determined while the memory usage of other areas cannot, restricting the use
of linear-time allocation memory areas. In some Java implementations, objects can be
inflated, or grow in size dynamically to accomodate additional fields that are known
only to the runtime. Our runtime does not allocate the extra space out of linear-time
allocation storage, but the real-time programmer must be aware that the memory
used by the runtime can grow with the number of objects allocated beyond the sum
of the sizes of the memory areas. The compiler may determine the size of a given
memory area, but the programmer may wish to know that size to help determine
statically what input size may cause the program to run out of memory, accounting

for the possible overhead of object inflation.

A standard library may facilitate programming with no-heap real-time threads.
To make the standard library usable in no-heap real-time threads, it must have strict
performance guarantees. Therefore, the programmers of the standard library may
wish to use linear-time allocation to satisfy performance requirements. No other
form of allocation in the Real-Time Specification for Java [3] has performance bounds.
However, the sizes of the linear-time allocation memory areas the standard library
may use are not portable between compilers, limiting the portability of the standard
library. If the compiler specifies the sizes of the linear-time allocation memory areas
used in the standard library, the programmer may wish to know the memory usage of
various library functions to optimize the memory usage of the program, particularly

if the memory usage cannot be exactly described in the specification for the library

26

routines. However, if the programmer uses this information to optimize the memory

usage of the program, the program may not perform consistently across platforms.
A solution to the problem of specifying the sizes of linear-time allocation memory

areas may be a prerequisite to the wide-scale use of performance bounded allocation

in Real-Time Java.

57

o8

Chapter 5

Developing Real-Time Java

Programs

An additional design goal becomes extremely important when actually developing
Real-Time Java programs: ease of debugging. During the development process, fa-
cilitating debugging became a primary design goal. In fact, we found it close to
impossible to develop error-free Real-Time Java programs without some sort of assis-
tance (either a debugging system or static analysis) that helped us locate the reason
for our problems using the different kinds of memory areas. Our debugging was es-
pecially complicated by the fact that the standard Java libraries basically don’t work

at all with no-heap real-time threads.

5.1 Incremental Debugging

During our development of Real-Time Java programs, we found the following incre-
mental debugging strategy to be useful. We first stubbed out all of the Real-Time
Java heap reference checks and assignment checks and special memory allocation
strategies, in effect running the Real-Time Java program as a standard Java pro-
gram. We used this version to debug the basic functionality of the program. We
then added the heap reference checks and assignment checks, and used this version

to debug the memory allocation strategy of the program. We were able to use this

99

strategy to divide the debugging process into stages, with a manageable amount of
bugs found at each stage.

It is also possible to use static analysis to verify the correct use of Real-Time Java
scoped memories [9]. We had access to such an analysis when we were implementing
our benchmark programs, and the analysis was very useful for helping us debug
our use of scoped memories. It also dramatically increased our confidence in the
correctness of the final program, and enabled a static check elimination optimization

that improved the performance of the program.

5.2 Additional Runtime Debugging Information

Heap reference checks and assignment checks can be used to help detect mistakes early
in the development process, but additional tools may be necessary to understand and
fix those mistakes in a timely fashion. We therefore augmented the memory area
data structure to produce a debugging system that helps programmers understand
the causes of object referencing errors.

When a debugging flag is enabled, the implementation attaches the original Java
source code file name and line number to each allocated object. Furthermore, with
the use of macros, we also obtain allocation site information for native methods.
We store this allocation site information in a list associated with the memory area
allocation structure which allocated the object. Given any arbitrary object reference,
a debugging function can retrieve the debugging information for the object. Using
a list of all allocation memory area allocation structures, the debugging system can
dump a map of all allocated objects and which memory area and allocation site
allocated them. Combined with a stack trace at the point of an illegal assignment or
reference, the allocation site information from both the source and destination of an
illegal assignment or the location of an illegal reference can help quickly determine
the exact cause of the error and the objects responsible. The debugging system can
also display allocation site information at the time of allocation to provide a program

trace which can help determine control flow, putting the reference in a context at the

60

time of the error.

5.3 Interaction With the Debugging System

When initially debugging the benchmark Array with no-heap real-time threads en-
abled, the program suddenly crashed. The debugging system produced the following

error message:

attempted heap reference 0x40262d71 in Java code at
MemoryArea. java:139, pointer at 0x40262d71,

found in MemBlock = 0x083485e8,

allocated during the main thread in the initial HeapMemory
at location ImmortalMemory.java:30 pointing to a location
of size 41 bytes

After looking at the initial allocation of the ImmortalMemory object on line 30 of
ImmortalMemory. java, we immediately understood that the system had allocated the
ImmortalMemory instance from heap memory and should allocate it from immortal
memory. We fixed the problem within five minutes. The debugging system also
alerted us to the fact that native methods must also allocate objects from memory
areas, and the Java Native Interface (JNI) functions must allocate objects using
functions aware of the current Real-time Java allocation function. The informative
error messages promoted rapid development of both the benchmarks and the Real-

Time Java memory management system.

5.4 Experience With the Sun JDK

Unfortunately, the Sun JDK version 1.3 was never designed to support Real-Time
Java. The first problem encountered was that every Thread adds itself to the main
ThreadGroup. Unfortunately, the main ThreadGroup, allocated from heap memory,
cannot store pointers to Threads allocated in scoped memory. In fact, any Real-
Time Java thread manager written in Java cannot store pointers to program-allocated

Thread objects. How can a thread manager written in Java determine which thread

61

to run if it cannot maintain an active thread list in Java? The answer is to maintain
the list in native code and be very careful about dereferencing pointers to thread
objects, especially when interrupting the garbage collector to run a no-heap real-time
thread.

The Sun JDK also presented other problems when running with no-heap real-
time threads. The constructor for the Thread object uses Integer.toString(int)
to form the thread name from its integer unique ID. Integer.toString(int) and
Integer.parseInt(String) do not work in no-heap real-time threads since the
digit method of Character loads a static reference to the heap, Character.A.
Double.toString(double) does not work because FloatingDecimal.long5pow is
a static reference to the heap. The greatest impediment to the early stages of de-
bugging no-heap real-time thread support was the fact that System.out is a static
reference to the heap, preventing System.out.println from working. In general,
most problems with no-heap real-time threads resulted from the fact that static ini-
tializers are run in the initial memory area, HeapMemory. Unfortunately, running
all static initializers in ImmortalMemory, in addition to violating the specification,
may needlessly waste memory. A new real-time library usable from no-heap real-time

threads would greatly facilitate development of large applications in Real-Time Java.

62

Chapter 6

Results

We implemented the Real-Time Java memory extensions in the MIT Flex compiler

1 Flex is an ahead-of-time compiler for Java that generates both

infrastructure.
native code and C; it can use a variety of garbage collectors. For these experiments,
we generated C and used the Boehm-Demers-Weiser conservative garbage collector

and a stop and copy collector.

We obtained several benchmark programs and used these programs to measure the
overhead of the heap reference checks and assignment checks. Our benchmarks include
Barnes, a hierarchical N-body solver, and Water, which simulates water molecules in
the liquid state. Initially these benchmarks allocated all objects in the heap. We
modified the benchmarks to use scoped memories whenever possible. We also present
results for two synthetic benchmarks, Tree and Array, that use object field assignment
heavily. These benchmarks are designed to obtain the maximum possible benefit from
heap reference check and assignment check elimination. We modified Tree, Array, and
Water to use no-heap real-time threads. We did not modify Barnes to use no-heap
real-time threads. As a result, even though we report the performance of Barnes with
no-heap real-time thread support, we do not expect Barnes to perform like a typical

application designed for use with no-heap real-time threads.

We ran all benchmarks on a Dell Dimension 4100 with a Pentium III 866 MHz

L Available at www.flexc.lcs.mit.edu

63

Table 6.1: Number of Objects Allocated In Different Memory Areas
Benchmark Version Heap Scoped Immortal Total
Array heap 13 4 0 17

no-heap 0 4 6 10
Tree heap 13 65,534 0 65,547
no-heap 0 65,534 6 65,540
Water heap 406,895 3,345,711 0 3,752,606
no-heap 0 3,328,086 405,647 3,733,733
Barnes heap 16,058 4,681,708 0 4,697,766
no-heap 16,058 4,681,708 0 4,697,766

Table 6.2: Number of Arrays Allocated In Different Memory Areas

Benchmark Version Heap Scoped Immortal Total
Array heap 36 4 0 40
no-heap 0 4 56 60
Tree heap 36 0 0 36
no-heap 0 0 56 56
Water heap 405,943 13,160,641 0 13,566,584
no-heap 0 13,160,641 403,696 13,564,337
Barnes heap 14,871 4,530,765 0 4,545,636
no-heap 14,871 4,530,765 0 4,545,636

processor, a 256 KB CPU cache and 512 MB RAM running RedHat 7.0 (Linux 2.2.16-

22smp kernel) at run-level 3. We compiled the benchmarks against the Sun JDK 1.3

class files using the FLEX compiler and gcc-2.95.3 with the -O9 option. Copies of all

benchmarks used are available upon request.

Table 6.1 presents the number of objects we were able to allocate in each of the

different kinds of memory areas for the no-heap real-time thread and real-time thread

versions of each benchmark. The goal is to allocate as many objects as possible in

scoped memory areas; the results show that we were able to modify the programs to

allocate the vast majority in scoped memories. Java programs also allocate arrays;

64

Table 6.2 presents the number of arrays that we were able to allocate in scoped mem-
ories. As for arrays, we were able to allocate the vast majority in scoped memories.
The no-heap real-time thread versions of Array, Tree, and Water allocate objects and
arrays that were on the heap in immortal memory. The “no-heap real-time thread”
version of Barnes has many heap allocated objects, since it is the same program as
the “real-time thread” version. Note that these statistics do not account for objects

and arrays generated by native code or by static initializers.

6.1 Assignment Checks

Storing a reference to an object with a shorter lifetime from an object with a longer
lifetime may create dangling references. The Real-Time Specification for Java [3]
forbids the creation of dangling references. Therefore, our compiler inserts dynamic
checks on every assignment to ensure this invariant. Unfortunately, these dynamic
checks incur a significant performance overhead.

Table 6.3 presents the number and type of assignment checks encountered during
the execution of each benchmark. Recall that there is a check every time the program
stores a reference. The different columns of the table break down the checks into
categories depending on the target of the store and the memory area that the stored
reference refers to. For example, from scoped to heap counts the number of times
the program stored a reference to heap memory into an object or array allocated in
a scoped memory. The no-heap real-time thread versions of Array, Tree, and Water
assign to and from immortal memory where the real-time thread version assign to and
from heap memory. The “no-heap real-time thread” version of Barnes is the same
program as the real-time thread version. Note that these statistics do not account
for objects and arrays generated by native code or by static initializers.

Table 6.4 presents the running times of the benchmarks with no-heap real-time
support disabled. We report results for eighteen different versions of the program.
The three rows for each benchmark indicate the use of the BDW garbage collector
with heavy threads (Heavy), the BDW garbage collector with user threads (User), and

65

Table 6.3: Assignment Counts

To
Benchmark(Version) From Heap Scoped Immortal
Array(heap) Heap 14 forbidden 8
Scoped 0 400,040,000 0
Immortal 0 forbidden 0
Array(no-heap) Heap 0 forbidden 12
Scoped 0 400,040,000 0
Immortal 0 forbidden 23
Tree(heap) Heap 14 forbidden 8
Scoped 0 65,597,532 65,601,536
Immortal 0 forbidden 0
Tree(no-heap) Heap 0 forbidden 12
Scoped 0 65,597,532 65,601,536
Immortal 0 forbidden 23
Water(heap) Heap 409,907 forbidden 0
Scoped 17,836 9,890,211 844
Immortal 3 0 1
Water(no-heap) Heap 0 forbidden 6
Scoped 0 9,890,211 18,680
Immortal 1 forbidden 408,306
Barnes(heap) Heap 90,856 forbidden 80,448
Scoped 9,742 4,596,716 1328
Immortal 0 forbidden 0
Barnes(no-heap) Heap 90,856 forbidden 80,448
Scoped 9,742 4,596,716 1328
Immortal 0 forbidden 0

66

Table 6.4: Execution Times of Benchmark Programs

With Checks Without Checks
Benchmark Version Heap VT LT Heap VT LT
Array Heavy 28.7 43.3 43.9 7.9 7.9 8.0

User 28.1 43.0 43.1 7.7 7.7 8.0
Copy 151.1 192.7 1941 169 179 179

Tree Heavy 134 169 16.9 7.0 7.0 7.0
User 13.3 16.8 16.8 7.0 7.0 7.0
Copy 494 59.2 552 122 16.7 123

Water Heavy 177.6 173.7 163.7 133.6 125.7 115.2
User 999 906 79.6 773 67.6 58.1
Copy 96.8 109.5 95.1 75.2 85.6 72.0

Barnes Heavy 51.3 414 35.0 445 345 277
User 39.1 258 19.6 389 253 19.0
Copy 29.7 36.1 299 225 283 223

the stop-and-copy garbage collector with user threads (Copy). The first three columns
all have assignment checks, and vary in the memory area they use for objects that
we were able to allocate in scoped memory. The Heap version allocates all objects in
the heap. The VT version allocates scoped-memory objects in instances of VTMemory
(which use malloc-based allocation); the LT version allocates scoped-memory objects
in instances of LTMemory (which use stack-based allocation). The next three versions
use the same allocation strategy, but the compiler generates code that omits the
assignment checks. For our benchmarks, our static analysis is able to verify that
none of the assignment checks will fail, enabling the compiler to eliminate all of these
checks [9].

These results show that assignment checks add significant overhead for all bench-
marks. But the use of scoped memories produces significant performance gains for
Barnes and Water when running with user threads and the BDW garbage collector.
In the end, the use of scoped memories without checks significantly increases the over-
all performance of the program using the BDW garbage collector. To investigate the

causes of the performance differences, we instrumented the run-time system to mea-

67

sure the garbage collection pause times. Based on these measurements, we attribute
most of the performance differences between the versions of Water and Barnes with
and without scoped memories to garbage collection overheads. Specifically, the use
of scoped memories improved every aspect of the BDW garbage collector: it reduced
the total garbage collection overhead, increased the time between collections, and

significantly reduced the pause times for each collection.

BDW is a conservative mark-and-sweep garbage collector for C. The BDW garbage
collector conservatively scans all memory for possible pointers into the garbage-
collected heap. BDW stops all threads, uses heuristics to identify pointers during
a scan, then a generational mark-and-sweep algorithm to collect garbage. Since C
does not tag pointers separately from numbers in memory, BDW must conservatively
guess whether a given 32-bit integer in memory is actually a pointer to garbage-
collected memory. Since the BDW collector stops all threads, scans all memory, and
examines headers preceding allocated memory during collection, it cannot currently

support concurrent running of no-heap real-time threads.

Therefore, we used another garbage collector based on a simple version of the
stop and copy algorithm to support no-heap real-time threads. Our stop-and-copy
garbage collector stops all real-time threads (but not no-heap real-time threads) by
setting a flag which all threads check periodically. It waits for all threads to notice
the flag and stop before proceeding with garbage collection. During the garbage
collection scan, the stop-and-copy garbage collector calls a function in the Real-Time
Java implementation to add all heap references from scoped and immortal memory

areas to the rootset.

The use of linear-time allocation memory areas with the stop and copy garbage
collector did not show significant performance improvements, since the current im-
plementation incurs significant overhead for scanning for roots into garbage-collected
space from linear-time memory areas. Optimization of the scanning routine may
improve performance. Optimizing the linear-time allocator to remove unnecessary
rezeroing of memory in the presence of precise garbage collection may also lead to

performance increases.

68

Notice that the heavy (POSIX) thread versions of Water and Barnes use signifi-
cantly more time than their user thread counterparts. The user thread manager only
switches threads when a thread attempts to grab a lock and must wait for another
thread to release it, or when the thread blocks for I/O. Since Water and Barnes do
not use significant I/O after the benchmarks load initial parameters, and each thread
rarely waits for a lock, fewer switches between threads occur when using user threads
than heavy threads. Since threads share memory areas in both benchmarks, reduc-
ing thread switching can also reduce memory usage. When the reference count of a
memory area reaches zero, the memory area finalizes and deallocates all contained
objects. The memory area resets and the program can reuse the memory associated
with the memory area. Thus, running threads serially reduces memory use. Also,
heavy thread switching involves the overhead of operating system calls whereas user
thread switching does not. Unfortunately, real-time performance constraints may re-
quire a real-time thread manager to switch threads even when no thread is blocked

on I/O or waiting for a lock.

For Array and Tree, there is almost no garbage collection for any of the versions
and the versions without checks all exhibit basically the same performance. With
checks, the versions that allocate all objects in the heap run faster than the versions
that allocate objects in scoped memories. We attribute this performance difference to
the fact that heap to heap assignment checks are faster than scope to scope assignment

checks.

Notice that, while running the stop-and-copy garbage collector, the versions of
Array and Tree with assignment checks run much slower than the versions without
assignment checks. The stop-and-copy garbage collector stops threads by setting a
flag which the program threads check periodically. The compiler inserts flag checks
at the beginning of every method, inside every loop, after a method call, and when
the method returns. In summary, it inserts flag checks at all program points with
outside edges in the control flow graph. Our implementation uses Java code includ-
ing several method calls and a loop for assignment checks. Therefore, the assignment

checks are a target for the compiler pass that inserts garbage collector flag checks and

69

each assignment check may involve several garbage collector flag checks. Since every
assignment requires an assignment check, the program checks the garbage collector
many times during the execution of the program. This is an easy problem to fix: sim-
ply do not emit garbage collector flag checks within assignment checks. However, this
problem illustrates an important point. Without analyzing the interactions between

checks, the effect on performance of adding a new type of check is multiplicative.

6.2 Heap Reference Checks

No-heap real-time threads run asynchronously with the garbage collector and cannot
manipulate references to the heap, since the heap may be in an inconsistent state
during a garbage collection. The Real-Time Specification for Java [3] does not permit
no-heap realtime threads to manipulate reference to the heap. Therefore, our compiler
inserts dynamic checks on every heap reference to ensure this invariant. There are

five ways a thread could illegally obtain or manipulate a reference to the heap:

e A method call to a native method could return a heap reference (CALL).

A call to the runtime could return a heap reference (NATIVECALL).

Arguments to a method may point to the heap (METHOD).
e A read of a field may return a heap reference (READ).
e A write to a field may overwrite a heap reference (WRITE).

Unfortunately, heap reference checks incur a significant performance overhead.
Table 6.5 presents the number and type of heap reference checks encountered
during the execution of each benchmark. Note that most heap reference checks occur
during a read of a field. Array and Tree copy data structures, so each encounters as
many reads as writes. This is not true for Water, which is more similar to typical
programs. Note that Tree checks many arguments to methods. Every call to construct

a new tree element object involves passing in multiple arguments. Also note the total

70

Table 6.5: Heap Check Counts

Benchmark CALL METHOD NATIVECALL
Array 101 560 33
Tree 131,171 87,773,758 33
Water 50,582,452 1,739,663 71,934
Barnes 5,081,428 58,921,280 340,642
Benchmark READ WRITE Total
Array 400,000,359 400,040,120 800,041,173
Tree 174,756,342 131,199,188 393,860,492
Water 353,089,248 10,642,997 416,126,294
Barnes 103,855,249 6,310,800 174,509,399

number of checks encountered ranges from 300-800 million for the three benchmarks

listed.

Table 6.6 presents the number and type of heap references encountered during
the execution of each benchmark. Since the main thread is always a real-time thread
which starts execution in the heap, the number of heap references for no-heap real-
time thread enabled benchmarks is nonzero. Note that Array, Tree, and Water only
encounter 500-1,300 actual references to the heap. Most heap checks encountered in
both real-time threads and no-heap real-time threads are for references to non-heap
allocated objects in programs designed to use no-heap real-time threads extensively.
Therefore, our implementation of heap checks, which tests the reference to see whether
it points to the heap before testing whether the current thread is a no-heap real-time
thread, makes sense. Most checks will just check the low bit of the pointer and move

on.

Notice that the “no-heap real-time thread” version of Barnes (which is the same
as the real-time thread version) has 85 million heap references. The large number of
heap references in an unmodified program and the small number of heap references
in a modified program illustrate the changes that occur when a programmer modifies

a program to use no-heap real-time threads extensively.

71

Table 6.6: Heap Reference Counts

Benchmark CALL METHOD NATIVECALL
Array 25 340 9
Tree 25 336 9
Water 27 631 7
Barnes 3,016,797 28,942,950 333
Benchmark READ WRITE Total
Array 188 6 568
Tree 171 6 547
Water 565 7 1,237
Barnes 53,410,543 234,267 85,604,890
Table 6.7: Overhead of Heap Reference Checks
With Without With
Thread Heap Checks Heap Checks All Checks
Benchmark Type VT LT VT LT VT LT
Array Heavy 38.3 384 320 32.0 560.9 567.3
User 38.2 38.5 32.0 32.0 244.6 249.2
Tree Heavy 445 283 29.1 253 1746 159.9
User 240 166 18.1 143 788 70.7
Water Heavy 170.7 147.9 162.7 137.8 229.2 201.7
User 97.1 86.3 88.6 783 1283 116.3

72

Table 6.7 presents the overhead of heap reference checks for each of the three
benchmarks which use no-heap real-time threads. The first two columns present per-
formance with heap reference checks. The second two columns present performance
of the benchmarks compiled without emitting heap reference checks. The third two
columns present the performance of adding assignment checks and heap reference
checks. The first of each pair of columns lists performance numbers for benchmarks
using variable-time scoped memory areas. The second of each pair of columns lists
performance numbers for benchmarks using linear-time scoped memory areas. The
second column lists the type of the threads used in each benchmark, user thread or
heavy (POSIX) threads.

Heavy threads incur a significant performance overhead for both Tree and Water.
The memory usage of Tree doubled when using heavy threads instead of user threads.
Since Tree uses no blocking locks, and the memory allocation system does not use
blocking locks, the user thread manager only switches between the two threads when
the first thread finishes. Since two threads share a single memory area in Tree,
switching threads can use twice as much memory as running on thread serially. When
one thread runs after another, the memory area resets and can reuse the same memory.
Unfortunately real-time constraints may require a real-time thread manager to switch
threads often.

Overall, performance improved with the use of linear-time allocation memory
areas over variable-time allocation memory areas, as expected. In our implementa-
tion, linear-time allocation memory areas bump a stack pointer to allocate memory,
whereas variable-time allocation memory areas call malloc to allocate memory.

Note the significant overhead when running with both assignment checks and
heap reference checks enabled. The last two columns of table 6.7 demonstrate the

multiplicative effect of the overhead of adding different types of checks.

73

74

Chapter 7

Conclusion

The Real-Time Specification for Java [3] promises to bring the benefits of Java to
programmers building real-time systems. One of the key aspects of the specifica-
tion is extending the Java memory model to give the programmer more control over
memory management. Since Real-Time Java is a strict superset of ordinary Java,
performance-critical sections of the program can run with extensions which offer real-
time performance guarantees concurrently with non-critical sections which run in
ordinary Java. Use of the extensions offers predictable performance.

We have implemented these extensions. We found that the primary implementa-
tion complication was ensuring a lack of interference between the garbage collector
and no-heap real-time threads, which execute asynchronously. Since the use of block-
ing locks in the allocation system can introduce complications because of interactions
between the garbage collector, no-heap real-time threads, and real-time threads, the
implementation used various non-blocking synchronization techniques.

A second implementation complication was determining how to manage the mem-
ory for the memory management and general implementation data structures. The
initial candidates were the memory areas, but for some data structures, no memory
area described in the specification seemed appropriate. In particular, the Real-Time
Specification for Java [3] seems to have no memory area which any type of thread can
access after entering any type of memory area and can deallocate memory before the

program terminates. We invented a new memory area to solve this problem.

75

Programs requiring performance guarantees often also require safety guarantees.
Static program analysis can prove the safety of programs and identify all potential ille-
gal accesses or assignments. Unfortunately, static correctness analyses can sometimes
constrain the program in more ways than dynamic checks. If a program’s correctness
cannot be proven with the static analysis tools at hand, then dynamic checks and
debugging tools should provide detailed information to locate quickly the source of
errors. Unfortunately, dynamic checks and debugging tools cannot offer the safety

guarantees that static analysis can.

We found debugging tools necessary for the effective development of programs
that use the Real-Time Java memory management extensions. We used both a static
analysis and a dynamic debugging system to help locate the source of incorrect uses
of these extensions. Incremental debugging and the ability to selectively enable or
disable parts of the extensions was useful for debugging both applications and the
implementation. Allocation site traces, pointer identification through association with
allocation sites, allocation site memory maps, and detailed information from dynamic
checks were essential to timely application development. Maintaining allocation site
information separately from the objects allowed queries to the debugging system
concerning pointers to corrupted objects to yield allocation site information for the
object originally allocated at that location. Use of no-heap real-time threads with the
Sun JDK 1.3 is not recommended. A real-time library usable from no-heap real-time

threads would speed application development.

A library with real-time guarantees which uses performance-bounded memory al-
location (linear-time allocation memory areas) from Real-Time Java has to specify
an initial size for the performance-bounded region of a linear-time allocation mem-
ory area. Since this initial size is platform-specific, real-time libraries which use
performance-bounded memory allocation may not be portable. The development of
a large portable library with real-time performance guarantees to facilitate real-time
application development may necessitate a solution to the memory area initial size

problem.

Overall, the Real-Time Specification for Java [3] offers a good starting point as

76

a set of language extensions to support initial real-time application development in
Java. Solutions to all problems encountered during real-time application development
in Java may require more research and specification development. Based on our
experience, however, we feel that the specification and/or the standard Java execution
environments may undergo significant additional development before they are suitable

for widespread use.

7

78

Chapter 8

Future Work

The Real-Time Specification for Java [3] and our implementation provides a base for
many future research projects. Unfortunately, our implementation currently includes
support for only the memory management aspects of the Real-Time Specification for
Java. [3] We have yet to explore aspects related to the real-time thread scheduler.
Future work may include projects related to analysis, application development, and
enhancements to the implementation.

Analysis projects include:

escape analysis to eliminate heap reference checks,
e use of memory area type information to eliminate more checks,

e static cycle detection to ensure the safety of using reference count memory areas

in applications,

e statically determining the sizes of memory areas in terms of variables available to

the constructor of the memory area using implementation specific information,
e proving that some programs never run out of memory,

e and static analysis to infer regions and automatically convert Java programs

into Real-Time Java programs using scoped memories for speed improvements.

Application development projects include:

79

a general-purpose real-time library usable from no-heap real-time threads,

specific real-time libraries to interface with real-world hardware, such as a video
library to process images from a camera, or a library to control commands given

to a robot,

develop a standard set of benchmarks that can test the performance and com-

pliance of different Real-Time Java implementations,

and, after developing many applications using Real-Time Java, develop a new
set of requirements for the Real-Time Java specification and ideas to enhance

the application development environment and debugging system.

Implementation enhancements include:

alternatives to the reference count memory areas,

better memory allocation strategies for linear-time and variable-time memory

areas which may deallocate objects early,
finish implementing the entire Real-Time Specification for Java [3],

and work on the integration of many different types of garbage collectors with

no-heap real-time threads.

80

Bibliography

1]

2]

3]

[4]

[5]

[6]

[7]

8]

[9]

A. Aiken and D. Gay. Memory management with explicit regions. In Proceedings
of SIGPLAN’98 Conference on Programming Languages Design and Implemen-
tation, SIGPLAN, pages 313-323, Montreal, June 1998. ACM.

A. Aiken and D. Gay. Language support for regions. In PLDI [8].

G. Bollella, B. Brosgol, P. Dibble, S. Furr, J. Gosling, D. Hardin, and M. Turn-
bull. The Real-Time Specification for Java. Addison-Wesley, Reading, Mas-
sachusetts, June 2000.

D. Cannarozzi, M. Plezbert, and R. Cytron. Contaminated garbage collection.

In PLDI [7].

M. Christiansen and P. Velschrow. Region-based memory management in Java.

Master’s thesis, DIKU, May 1998.

T. Domani, E. Kolodner, and E. Petrank. A generational on-the-fly garbage
collector for Java. In PLDI [7].

Proceedings of SIGPLAN 2000 Conference on Programming Languages Design
and Implementation, SIGPLAN, Vancouver, June 2000. ACM.

Proceedings of SIGPLAN 2001 Conference on Programming Languages Design
and Implementation, SIGPLAN, Snowbird, Utah, June 2001. ACM.

A. Salcianu and M. Rinard. Pointer and escape analysis for multithreaded pro-

grams. In PLDI [8].

81

[10] M. Tofte and J. Talpin. Region-based memory management. Information and

Computation, 132(2):109-176, 1997.

[11] D. Walker and K. Watkins. On regions and linear types. To appear in the
ACM SIGPLAN International Conference on Functional Programming, Septem-
ber 2001.

82

