
Write Barrier Removal by Static Analysis

Karen Zee and Martin Rinard
Laboratory for Computer Science

Massachusetts Institute of Technology
Cambridge, MA 02139
{~=-. rJ.uard}@lcs.mit, edu

ABSTRACT
We present a set of stat ic analyses for removing write barri-
ers in programs tha t use generational garbage collection. To
our knowledge, these are the first analyses for this purpose.
Our lntrQprocedural analysis UseS a flow-sensitive pointer
analysis to locate variables tha t must point to the most re-
cently allocated object, then eliminates write barriers on
stores to objects accessed via one of these variables. The
(Tallee ~pe Eztenaion incorporates information about the
types of objects allocated in invoked methods, while the
Caller Con~az~ Ez~ension incorporates information about
the most recently allocated object at call sites tha t invoke
the currently analyzed method. Results from our imple-
mented system show tha t our l;~dl lnterprocedured analy-
sis, which incorporates both extensions, can eliminate the
major i ty of the write barriers in most of the programs in
our benchmark set, producing modest performance improve-
ments of up to 7% of the overall execution time. Moreover,
by dynamically instrumenting the executable, we are able to
show tha t for all bu t two of our nine benchmark programs,
our analysis is close to opt imal in the sense tha t it eliminates
the write barriers for almost all store instructions observed
not to ~ e a t e a reference from an older object to a younger
object.

Keywords
Program analysis~ pointer ~n~lysis, generational garbage c o l
lection, write barriers

1. INTRODUCTION
Generational garbage collectors have become the memory
management alternative of choice for many safe languages.
The basic idea behind generational collection is to segregate
objects into different generations based on their age. Gen-
erations containing recently allocated objects are typically
collected more frequently than older generations; as young
objects age by surviving collections, the collector promotes
them into older generations. Generational collectors there-
fore work well for programs tha t allocate m a r y short-lived
objects and some long-lived objects - - promoting long-lived
objects into older generations enables the garbage collector
to quickly scan the objects in younger generations.

Before it scans a generation, the collector must locate all ref-
ereness into t ha t generation from older generations. Wr/te
bavr/ers are the s tandard way to locate these references - - at

"This research was suppor ted by NSF Grant CCR00-73513.

every instruction tha t stores a heap reference into an object,
the compiler inserts code t ha t updates an interganerational
reference da ta structure. This da ta s t ructure enables the
garbage collector to find all ref~ences f rom objects in older
generations to objects in younger generations ~ d use these
references as roots during the collections of younger gen-
erations. The write barrier overhead haq tradit ionally been
accepted as par t of the cost of using a generational collector.

This paper presents a set of now program analyses tha t en-
ables the compiler to statically eliminate write barriers for
instructions tha t never ~reate a reference from an object in
an older generation to an object in a younger generation.
The basic idea is to use pointer ~nalysis to locate store in-
structions t ha t always write the most recently allocated ob-
ject. Because this object is the youngest object, such a store
instruction will never create a reference f rom an older object
to a younger object. The write barrier for this instruction is
therefore superfluous and the t ransformat ion eliminates it. l
We have implemented several analyses t ha t use this basic
approach to write barrier elimination:

• I n t r a p r o c e d u r a l A n a l y s i s : This m=alysis analyzes
each method separately from all other methods. I t
uses a flow-sensitive, intraprocedural pointer analysis
to find variables tha t must refer to the most recently
allocated object. At me thod entry, the analysis con-
servatively assumes tha t no variable points to the most
recently allocated object. Alter each method invocL-
t ion site, the analysis also conservatively u s u m e s tha t
no variable refers to the most recently allocated object.

• Ca l] ee T y p e E x t e n a l o n : This extension augments
the Intraprocedural analysis w/th information from in-
voked methods. I t finds variables tha t refer to the ob-
ject most recently allocated within the currently an-
alyzed method (the method-youngest object). I t also
t racks the types of objects allocated by ear.h invoked
method. For each p rogram point, it extracts a pair
(V, T) , where V is the set of variables t ha t refer to the
method-youngest object and T is a set of the types of
objects potentially allocated by methods invoked since

£This analysis agsumes the mos t recently allocated object is
always allocated in the youngest generation. In some cases
it may be desirable to allocate large objects in older gener-
ations. A straightforward extension o f our analysis would
etaticaliy identify objects t ha t might be allocated in older
generations and suppress write barrier elimination for stores
tha t write these objects.

A C M S I G P L A N Not ices 32 V. 37(4) Apri l 2002

the method-youngest object was allocated. If a store
instruction writes a reference to an object o of type C
into the method-youngest object, and C is not a super-
type of any type in T, the transformation can elimi-
nate the write barrier - - the method-youngest object
is younger than the object o.

Cal ler C o n t e x t E x t e n s i o n : This extension aug-
ments the Intraprocedural analysis with information
about the points-to information at call sites that may
invoke the currently analyzed method. If the receiver
object of the currently eaxalyzed method is the most
recently allocated object at all possible call sites, the
algorithm can assume that the t h i s variable refers to
the most recently allocated object at the entry point
of the currently analyzed method.

Full l n t e r p r o c e d u r a l This analysis combines the
Calico Type Extension and the Caller Context Ex-
tension to obtain an analysis that uses both type in-
formation fzom calicos and points-to information fzom
callers.

Our experimental results show that, for our set of bench-
mark programs, the Full Interprocedural analysis is often
able to eliminate a substantial number of write barriers, pro-
ducing modest overall performance improvements of up to
a 7~ reduction in the total execution time. Moreov~, by
instrumenting the benchmexks to dynamically observe the
age of the source andtarget objects at ear.~ store instruction,
we are able to show that in all but two of our nine bench-
marks, the analysis is able to eliminate the write barriers
at virtually a/l of the store instructions that do not create
a reference groin an older object to a younger object dur-
ing the execution on the default input f ~ m the benehmezk
suite. In other words, the analysis is basically optimal for
these benchmarks. Finally, this optimality xequkes informa-
tion from both the calling context and the called methods.
Neither the Calico Type Extension nor the Caller Context
Extension by itself is able to eliminate a significant number
of write barriers.

This paper provides the following contributions:

• W r i t e B a r r i e r R e m o v a l : It identifies write barrier
removal as an effective means of improving the per-
formance of programs that use generational garbage
collection.

• Ana lys i s A l g o r i t h m s : It presents several new static
analysis algorithms that enable the compiler to auto-
matically remove unnecessary write barriers. To the
best of our knowledge, these are the first algorithms
to use program analysis to eliminate write barriers.

• E x p e r i m e n t a l Resu l t s : It presents a complete set of
experimental results that characterize effi~ivenses of
the analyses on a set of benchmark programs. These
results show that the Full Interprocedural analysis is
able to remove the majority of the write barriers for
most of the programs in our bene hrnexk suite, produc-
ing modest performance benefits of up to a 7~ reduc-
tion in the total execution time.

c l a s s T r e e N o d e (

TreaNode l e f t ;
TreeNode r i g h t ;
Intege~ depth;
s t a t i c publ ic vo:Ld mJJs(Stri~q~[] mrg)

bu i l dTres (10) ;
}
vo£d l ~ k n e p t h (i n t d)

d e p t h . , new Tategex(d) ;
}
void lJJLkTree(TraeNode I , TreeNode r ,

I: l e f t ffi 1;
link.Depth (d) ;

2: r i g h t m r ;
}
s t a t i c ~reeNode b u i l d T r e e (i n t d)

i f (d <ffi O) xetux-n n u l l :
TreeNede 1 ffi bu$ ldTree (d - l) ;
TreeNode r = bui ldTxee(d-1) :
TreeNoda t ffi nee TreeNoda():
t . l ~ a k T r e e (l , r . d) ;
r e t u r n t ;

}
}

xnt d) (

F i g u r e 1: B i n a r y Tree E x a m p l e

The remainder of this paper is structured as follows. Sec-
tion 2 presents an example that illustrates how the algorithm
works and how it can be used to remove unnecessary write
barriers. Section 3 presents the analysis algorithms. We
discuss experimental results in Section 4, related work in
Section 5, and conclude in Section 6.

2. AN EXAMPLE
Figure I presents a binary tree construction example. In
addition to the l e f t and r i g h t fields, which implement
the tree structure, each tree node also has a depth field
that refers to an I n t e g e r object containing the depth of
the subtree rooted at that node. In this e~mple , the l a i n
method invokes the bui ldTrae method, which calls itself
recursively to create the left and right subtrese before creat-
ing the root TxeeIode. The 14-kTres method links the left
and right subtrees into the the current node, and invokes
the 14-knepth method to allocate the I a t e p r object that
holds the depth and link this new object into the tree.

We focus on the two store instructions generated from lines
1 and 2 in Figure 1; these store instructions link the left and
right subtrees into the receiver of the l inkTree method. In
the absence of any information about the relative ages of
the three objects involved (the left tree node, the right tree
node, and the receiver), the implementation must consorvL-
tively generate write barriers at each store op~ation. But
in this particular proKr~m , these write barriers are super-
fluous: the receiver object is always younger than the left
and right tree nodes. This program is an example of a com-
mon pattern in many object-oriented program~ in which the
program ~llocates s new object, then immediately invokes
a method to initialize the object. Write barriers are oi~en
unnecessary for these assignments because the object being

ACM S I G P L A N Notices 33 V. 37(4) April 2002

in i t ia l ized is of ten t h e mos t r ecen t ly a l loca ted objec t . ~

In our example , t h e analys is al lows t h e compi le r to omi t
t he unnecessa ry wr i t e bar r ie r s as follows. T h e analys is f irst
de t e rmines t h a t , a t all call s i tes t h a t invoke the l i n k T r e e
m e t h o d , t h e receiver o b j e c t of lJ~akTree is t he mos t r ecen t ly
a l loca ted ob jec t . I t t h e n ana lyzes t h e l i n k T r e e m e t h o d wi th
th i s in format ion . Since no a l loca t ions occur be tween the en-
t r y po in t of t h e l £ n k T r e e m e t h o d a n d s tore ins t ruc t ion a t
l ine 1, t h e receiver o b j e c t r e m a i n s t h e mos t r ecen t ly allo-
c a t e d ob jec t , so t he wr i t e ba r r i e r a t th i s s to re in s t ruc t ion
c~n be safely r emoved .

In be tween l ines 1 a n d 2, t h e l i a k l ~ e e m e t h o d invokes t h e
14=~nep th m e t h o d , which a l loca tes a new I n t e g e r o b j e c t
to ho ld t h e dep th . A l t e r t h e cal l to l t - ~ n e p t h , t h e receiver
ob jec t is no longer t h e mos t r ecen t ly a l loca ted ob jec t . B u t
du r ing t h e ana lys i s of t h e l i n k T r e e m e t h o d , t h e a lgo r i t hm
t r acks t h e t y p e s of t h e ob j ec t s t h a t each invoked m e t h o d
m a y create . A t l ine 2, t h e ana lys i s records t h e fac t t h a t
t he rece iver r e fe r red to t h e mos t r ecen t ly a l l oca t ed ob jec t
when t h e l l a k T r a e m e t h o d was invoked, t h a t t h e l ~ - k T r e e
m e t h o d i tself has a l l oca t ed no new ob jec t s so far , a n d t h a t
t he l i ~ n e p t h m e t h o d ca l led b y t h e l i n k T r e e m e t h o d allo-
ca tes only Z n t e g e r ob jec t s . T h e s to re in s t ruc t ion from l ine
2 crea tes a reference f rom t h e rece iver ob j ec t t o a TreeNede
objec t . Because TreeNode is n o t a superclaa9 of I n t e g e r ,
t h e re fe r red TreoNode o b j e c t m u s t have ex i s t ed when the
14wbTraa m e t h o d s t a r t e d i t s execut ion . Because t h e re-
ceiver was t h e mos t r ecen t ly a l l oca t ed o b j e c t a t t h a t po in t ,
t h e s to re in s t ruc t ion a t l ine 2 c rea tes a reference to an ob jec t
t h a t is a t leas t as o ld as t h e receiver. T h e wr i t e ba r r i e r a t
l ine 2 is the re fore super f luous a n d can b e safely removed .

3. THE ANALYSIS
O u r analys is has t h e following s t ruc tu re : i t consis ts of
a p u r e l y i n t r a p r o c e d u r a l f ramework , a n d two in te rproce-
d u r a l ex tens ions . T h e f i rs t ex tens ion , which we call t h e
Cel los T y p e Ex tens ion , i nco rpora t e s in fo rma t ion a b o u t
ca l led m e t h o d s . T h e second ex tens ion , which we call t h e
Cal ler C o n t e x t Ex tens ion , i nco rpo ra t e s i n fo rma t ion a b o u t
t h e cal l ing con tex t . W i t h t h e s e two ex tens ions , which can
be app l i ed s e p a r a t e l y or in combina t ion , we have a set of
four analyses , which are given in r ~ b l e 2.

T h e r -m~inde~ of th i s sec t ion is s t r u c t u r e d as follows. W e
p resen t t h e ana lys i s f ea tu res in Sect ion 3.1 and t h e p r o g r a m
r ep re sen t a t i on in Sec t ion 3.2. In Sect ion 3.3 we p resen t t h e
i n t r a p r o c e d u r a l analysis . W e p resen t t h e Cal lee On ly ana ly -
sis in Section' 3.4, and the Cal le r On ly ana lys i s in Sect ion 3.5.
In Sec t ion 3.6, we p re sen t t h e Ful l i n t e r p r o c e d u r a l analysis .
F ina l ly , in Sec t ion 3.7, we desc r ibe how the ana lys i s r esu l t s
a re used to r emove unnecessa ry w r i t e bar r ie rs .

ZNote t h a t even for t h e c o m m o n case of cons t ruc to r s t h a t
in i t ia l ize a r ecen t ly a l l oca t ed ob jec t , t h e receiver of t h e con-
s t r u c t o r m a y no t b e t he rrtoat r ecen t ly a l loca ted ob j ec t
o b j e c t a l loca t ion a n d in i t i a l i za t ion a re s e p a r a t e ope ra t i ons
in J ava by t ecode , a n d o t h e r o b j e c t a l loca t ions m a y occur
be tween when an o b j e c t is a l loca ted and when it is in i t ia l -
ized.

i n t r a p r o c e d u r a l
Cal los O n l y
Caller Only
Ful l I n t e r p r o c e d u r a l

W i t h Cal lee
T y p e

E x t e n s i o n
No
Yes
No
Yes

W i t h Cal ler
C o n t e x t

E x t e n s i o n
No
No
Yes
Yes

F i g u r e 2: T h e F o u r A J u d y s e n

3.1 Analysis features
Our analyses a re f low-sensi t ive, f o rw a rd d~ t a~ ow ana lyses
t h a t c o m p u t e m u s t po in t s - t o i n f o r m a t i o n a t each p r o g a m
poin t . T h e prec i se n a t u r e of t h e c o m p u t e d d a t a ~ e w fitcts
d e p e n d s on t h e analys is , i n genera l , t h e ana lyses w ~ k wi th
a set of va r iab les V t h a t m u s t p o i n t t o t he ob j ec t mos t
r ecen t ly a l l oca t ed by t h e c u r r e n t m e t h o d , a n d op t i ona l l y a
set of t y p e s T of ob j e c t s a l l oca t ed b y invoked m e t h o d s .

3~. Program Representation
i n t he res t of t h i s p a p e r , we use v, r e , v t , . . . , t o d e n o t e
local var iables , m, me, ms, . . . , t o d e n o t e m e t h o d s , a n d C, C0,
C1, • -. , t o deno t e types . T h e s t a t e m e n t s t h a t a re r e l evan t to
our ana lyses a re as follows: t h e o b j e c t a l loca t ion s t a t e m e n t
"v --- NEW C, ~ t h e move s t a t e m e n t a r t - - v2," a n d t h e cal l
s t a t e m e n t av = CALL re(v1, . . . ,vk) . ~ in t h e given form,
t h e f irst p a r a m e t e r to t h e call , v t , p o i n t s to t h e receiver
o b j e c t if t h e m e t h o d m is an i n s t ance m e t h o d , s

We as sume t h a t a p reced ing s t age of t h e compi le r has con-
s t r u c t e d ~ cont ro l flow g r a p h for each m e t h o d a n d a call
g r aph for t h e en t i r e p r o g r a m . W e use e n t r y , t o deno te t h e
e n t r y p o i n t of t h e m e t h o d m. F o r eAe.h s t a t e m e n t s t in t h e
progra~n, PRED(Ilt) is t h e set of p redecessors of a t in t h e
cont ro l flow graph . W e use o a t to deno t e t he p r o g r a m p o i n t
i m m e d i a t e l y before s t , a n d e r e to deno t e t h e p r o g r a m p o i n t
i m m e d i a t e l y aDAir e l . For eer~h such p r o g r a m po in t p (of
t h e fo rm o a t or a t e) , we d e n o t e A(p) t o b e t h e in fo rma t ion
c o m p u t e d b y t h e ana lys i s for t h a t p r o g r a m poin t . W e use
CALLERS(m) to d e n o t e t h e set of cal l s i tes t h a t m a y invoke
t h e m e t h o d m.

3.3 The Intraprocedural Analysis
T h e s imples t of our set of ana lyses is t h e i n t r a p r o c e d u r a l
aamlysis. I t is a f lew-sensi t ive , f o rw a rd d a t ~ ana lys i s t h a t
genera tes , for each p r o g r a m po in t , t h e set of var iab les t h a t
m u s t p o i n t to t he m o s t r e c e n t l y a l l oca t ed ob jec t , known as
t h e m.obje~ W e call a va r i ab l e t h a t po in t s to t h e m.oSje~t
an m-variable.

T h e p r o p e r t y l a t t i ce is 7~(Var) (t he powerse t of t h e set of
var iab les Vex) w i th n o r m a l set inc lus ion as t h e o rde r ing re-
la t ion, where Vat is t h e set of all p r o g r a m var iables . T h e
mee t o p e r a t o r used to c ombine da ta f low fac t s a t control-lk~w
merge po in t s is t h e usua l se t in te r sec t ion ope ra to r : G ---- f3.

F i g u r e 3 p re sen t s t h e t r ans f e r func t ions for t h e analysis . I n
t h e c u e of an a l loca t ion s t a t e m e n t "v ---- N ~ C, n t he new
ob j ec t d e a r l y becomes t h e m o s t r ecen t ly a l l oca t ed ob jec t .

Sin Java , an i n s t a n c e m e t h o d is t h e s a m e as a non - s t a t i c
m e t h o d .

A C M S I G P L A N N o t i c e s 34 V. 37 (4) A p r i l 2002

s t

v ----NEV C

V l ~ Vg

v----CALL~(vt, . . . ,vk)
any other assignment to v

other statements

[. t](v)
(v)

V O { v s } i f v s ~ V
V\{vt} i f v , ~ V

v \ {v)
V

F i g u r e 3: T r a n s f e r F u n c t i o n s for the I n t r a p r o c e d u r a l
Ana lys i s

Since v is the only variable pointing to this newly-allocated
object, the transfer function returns the singleton {v}. For
a call statement "v = CALL m~(vl, . . . ,v~), D the transfer
function returns e, since in the absence of any interproce-
dural information, the analysis must consm-vatively assume
that the called method may allocate any number or type of
objects. For a move s ta tment%t --- v~ ~ where the source of
the move, v2, is an m-variable, the destination of the move,
el, becomes an m-v, riable. The transfer function therefore
returns the union of the current set of m-v~aria~les with the
singleton ~v}. For a move statement where the source of the
move is not an m-v~ariable, or fur any other type of ~sign-
meat (i.e., a load from a field or a static field), the destina-
tion of the move may not be an m-~ariable after the move.
The transfer function therefore returns the current set of
m-variables less the destination ~ i a b l e . Other statements
leave the set of m-~ar/ables unchanged.

The analysis result satisfies the following equations:

A(ost) = { ~ { A (s t ' -) if e t --_-- entry.
] eZ ° E PKED(et)} otherwise

=

The first equation states tha t the analysis result at the pro-
gram point immediately before a t is 0 if s t is the entry
point of the method; otherwise, the result is the meet of
the analysis results for the program points im~,ediately aS-
ter the predecessors of at. As we want to compute the set
of variables that definitely point to the most recently allo-
cated object, we use the meet operator (set intersection).
The second equation states that the analysis result at the
program point immediately after s t is obtained from apply-
ing the transfe~ function for a t to the analysis result at the
program point immediately before st .

The analysis starts with the set of m-vat/shies initialized
to the empty set for the entry point of method and to the
full set of variables Vex (the top element of our property
lattice) for all the other program points, and uses an iter-
ative algorithm to compute the greatest fixed point of the
aforementioned equations under subset inclusion.

3 .4 T h e C a l l e e O n l y A n a l y s i s
The Calles Type Extension builds upon the framework of
the Intraprocedural analysis, and extends it by using in-
formation about the types of objects allocated by invoked
methods.

This extension stems from the following observation. The
Intraprocedural analysis loses all information at call sites be-

cause it must conservatively assume that the invoked method
may allocate any number or type of objects. The Callee
Type Extension allows us to retain information across a call
by computing summary information about the types of the
objects that the invoked methods may allocate.

To do so, the Callee Type Extension relaxes the notion of
the m-object. In the Intraprocedural analysis, the m-object
is simply the most recently allocated object. In the Callee
Type Extension, the m-object is the object most recently al-
located by any statement in the currently analyzed method.
The analysis then computes, for each program point, a tu-
pie (V,T) containing a variable set V and a type set T.
The variable set V contains the variables that point to the
m-object (the m-v,~riables), and the type set T contains the
types of objects that may have been allocated by methods
invoked since the allocation of the m-ob3ect

The property lattice is now

z = r(var) x ,(Types)

where Vex is the set of all program variables and Types is the
set of all types used by the program. The ordering relation
on this lattice is

(V1,T,) _E (Vl C_ ^

Lad the corresponding meet operator is

(VI ,Tt) C] (V~ T~) ---- (V I N V 2 , Ts UT~)

The top element is T = (Var, ~). This lattice is in fact
the cartesian product of the lattices (~(Var), C_, U, n, Var, 0)
and (~P(Types), _~, n, U, 0, Types). These two lattices have
different ordering relations because their elements have dif-
forent meanings: V E P(Var) is must information, while
T E ~(Types) is meg/information.

Figure 4 presents the transfer functions for the Callee Only
analysis. Except for call statements, the transfer functions
treat the variable set component of the tuple in the same
way as in the Intraproced~ral analysis. For call statements
of unanalyzable methods (for e~mple , native methods), the
transfer function produces the (very) conservative approxi-
mation (0, ~). For other call statements, the transfer func-
tion returns the variable set unch~ged , but adds to the type
set the types of objects that may be allocated during the call.
Due to dynamic dispatch m the method invoked at s t may be
one of a set of methods, which we obtain from the call graph
using the auxiliary function CALLEES(et). To dstermine the
types of objects allocated by any particular method, we use
another auxiliary function ALLOCATED_TYPES. The set of
types that may be allocated during the call at s t is simply
the union of the result of the ALLOCATED_TYPES function
applied to each component of the set CALLm~S(at). The
only other tr~-~fer function that modifies the type set is the
allocation statement, which returns 0 as the second compo-
nent of the tuple.

The CALLEES function can be obtained directly from the
program call graph, while the ALLOCATBD_TYPES function
can be efficiently computed using a simple flow-insensitive
analysis thLt determines the least fixed point for the equa-
tion given in Figure 5.

ACM S I G P L A N Notices 35 V. 37(4) April 2002

et [eq((V,T))
v = l ' ~ C

V l ~-~ V2

v = C t L L a o (v ~ , . . . ,vh)

any other assignment to v
other statements

({v}, e)
(V t.J {v] }, T) ifva EV
(V \ { v , } , T) i f v a l ~ V

(0,0) if -~ANALYZABLE(st)
(V t, T*) otherwise

where V ' = V \ { v }
r~ = T [.J ([.J ALLOCATED_TYPES(m))

=~CxL,-sm(.t)
(v \ {v), T)

(V,T)

F i g u r e 4: T r a n s f e r F u n c t t o n a for t h e Ca l lee O n l y A n a l y s i s

The analysis solves the dntal]c~ equations in Figure 4 using
a standard work list algorithm. I t starts with the entry point
of the method initialized to (~, 0) and all other program
points initialized to the top element (Var, 0). It computes
the greatest fixed point of the equations as the solution.

3-~ The Caller Only Analysis
The Caller Context Extension stems from the observation
that the Intraprocedttral analysis has no information about
the m-object at the entry point of the method. The Caller
Context Extension augments this analysis to de t~mine if
the m-object is always the receiv~ of the currently analyzed
method. If so, it ~,Myzes the method with the ~2~ie variable
as an element of the set of variables V tha t must point to
the m-object at the entry point of the method.

With the Caller Context Extension, the property lattice,
associated ordering relation, and meet operator axe the same
as for the Intraprocedura/ analysis. Figure 6 presents the
additional dataltvw equation that defines the dataflow result
at the entry point of esr.h method. The equation basically
states that if the receiver object of the method is the m-
object at all call sites that may invoke the method, then
the t h i s variable refers to the m-object at the start of the
method. Note tha t because class (static) methods have no
receiver, V is always 0 at the start of these methods. It is
straightforward to extend this t reatment to handle call sites
in which an m-object is passed as a parameter other than
the receiver.

Within strongiy-conneeted components of the call graph, the
analysis uses a fixed point algorithm to compute the greatest
fixed point of the combined interprocedttral and intraproce-
dural equations. It initializes the analysis with {th£s} at
each method entry point, Vat at all other program points
within the strongiy-connected component, then iterates to
a fixed point. Between strongly-connected components, the
algorithm simply propagates the caller context information
in a top-down fashion, with each strongly-connected com-
ponent analyzed before any of the components tha t contain
methods that it may invoke.

3.6 The Full Interprocedural Analysis
The Full Interprocodural aat~.lysis combines the Callee Type
Extension and Caller Context Extension. The transfer func-
tions are the same as for the Callee Only analysis, given in
Table 4. Likewise, the property lattice, associated ordering
relation and meet operator are the same as for the Callee

Only ~nMysis. The analysis result at the entry point of the
method, however, is subject to the equation given in Fig-
ure 7.

With this extension, the analysis will recognize that it can
use ({ th in) ,0) as the m~alysis result at the entry point
entr~= of a method m if, at all call sites that may invoke
m, the receiver object of the method is the m-obj~t and the
type set is 0. Note tha t if we expand our d ~ - i t i o n of the
safe method, we can additionally propagate type set infor-
mation from the calling context into the called method.

Like the algorithm from the Caller Only analysis, the al-
gorithm for the Full Interprocedural analysis uses a fixed
point algorithm within strongly-connected components and
propagates caller context information in a top-down fashion
between components. It initializes the analysis aigorithm to
compute the greatest fixed point of the data~ow equations.

3.7 How to Use the Analysis Results
It is easy to see how the results of the Intraproceduxal anal-
ysis can be used to remove unnecessary write barriers. Since
an m-e~r/able must point to the most recently allocated ob-
ject, the write barrier can be removed for any store to an
object pointed to by an m.uariable, since the reference
ated mu~t point from a younger object to an older one. The
results of the Caller Only analysis are used in the same way.

It is less obvious how the analysis results are used when the
Callee Type Extension is applied, since the results now in-
dude a type set in addition to the variable set. Consider
a store of the form %] . f = v~," and the analysis result
(V, T) computed for the program point immediately before
the store. If vx E V, then vt must point to the m-objecf.
Any object allocated more recently than the m-object must
have type C such that C E T. If the ac tu~ (i.e., dynamic)
type of the object pointed to by v~ is not included in T,
then the object tha t vz points to must be older than the
object that vl points to. The write barrier associated with
the store can therefore be removed if vl E V, and if the
type of v2 is not an ancestor of any type in T. Note that
va ~ T is not a sufficient condition since the static type of
v2 may be different from its dynamic type. The analysis
results are used in this way whenever the Ca/lee Type Ex-
tension is applied (i.e., for both the Callee Only and the Full
Interproceduxal analyses).

ACM S I G P L A N Notices 36 V. 37(4) April 2002

ALLOCATI ,D_TYPBS(ta) = {cl' = c" "9 o
Bt l E ! $~kmr'BtU(n"i)

el:~ is a CALL

F i ~ z r e 5: E q u a t i o n for t h e ALLOCATED_TYPES F u n c t i o n

f I t s . }

A(•enerT I .) - -

(

if m is an instance method and
V s t E CALLEI~(m), IVl E V

where V = AC.et) and
ot is of the form ~v = CALL m(v l , . . . ,vk)"

otherwise

F i g u r e 6: E q u a t i o n for t h e E n t r y P o i n t o f a M e t h o d m for t h e Ca l l e r O n l y A n a l y s i s

4. EXPERIMENTAL RESULTS
We next present experimental results tha t characterize the
effectiveness of our optimization. In general, the Full In-
terprocedural analysis is able to remove the majori ty of the
write barriers for most of our applications. For applications
that execute many write barriers per second, this optimize~
tion can deliver modest peffurmance benefits of up to 7 ~ of
the overall execution time. There is synergistic interaction
between the Callee Type Extension and the Caller Context
Extension; in general, the anaiysis must use both extensions
to remove a significant number of write barriers.

4.1 Methodology
We implemented all four of our write barrier elimination
analyses in the MIT Flex compiler system, an ahead-of-time
compiler for Java progr~m~ written in J a v ~ This system,
including our implemented analyses, is available under the
GNU GPL at vmw.glex©.:tco~Lt.edu. The Flex runtime uses
a copying gen~ational collector with two generations, the
nursery and the tenured generation. It uses remembered
sets to track pointers from the tenured generation into the
nursery [18, 1]. Our remembered set implementation uses a
statically allocated array to store the addresses of the cre-
ated references. Ear~ write barrier therefore executes a store
into the next free element of the array and increments the
pointer to that element. By manually tuning the size of the
arre~v to the characteristics of our applications, we are able
to eliminate the array overflow check tha t would otherwise
be necessary for this implementation. 4

We present results for our analysis running on the Java ver-
sion of the Olden Benchmarks [6, 5]. This benchmark set
contains the following applications:

• e m 3 d : Models the propagation of electromagnetic
waves through objects in three dimensions [8].

• hea l t h : Simulates the health-care system in Colom-
b ~ [15].

• res t : Computes the minimum spanning tree of & graph
using Bentley's algorithm [3].

• p e r i m e t e r : Computes the total perimeter of a region
in a binary image represented by a quadtrso [17].

• p o w e r : Maximizes the economic efficiency of a com-
munity of p o w ~ consumers [16].

• i r e • a d d : Sums the values of the nodes in a binary
tree using a recursive depth-first traversal.

• t s p : Solves the traveling salesman problem [14].

• vo rono i : Computes a Voronoi diagram fur a random
set of points [9].

We do not include results for t sp because it uses a nonde-
terministic, probabilistic algorithm, causing the number of
write barriers executed to be vastly ~ n t in e a ~ run of
the same executable. In addition~ for three of the bench-
marks (bh, power, and treeadd) we modified the bench-
marks to construct the MathVector, Leaf, and TreoNode
data structures, respectively, in a bot tom-up instead of a
top-down mA.uner.

We present results for the following compiler options:

• bh : An implementation of the Barnse-Hut N-body
solver [21.

• b ioor t : An implementation of bitonic sort [4].

4Our write barriers are therefore somewhat more efficient
than they would be in a general system designed to execute
arbi trary programs with no a-priori information about the
behavior of the program.

Base l ine : No optimization, all writes to the heap have
associated write barriers.

I n t r a p r o c e d u r a h The Intraprocedural analysis de-
scTibed in Section 3.3.

Ca l l ee On ly : The analysis dmoribed in Section 3.4,
which uses information about the types of objects ai-
located in invoked methods.

A C M S I G P L A N Notices 37 V. 37(4) April 2002

f
~{l:~.},e)

t (e, e)

if m is an instance method and
V S t E CALLERS(m), Vl E V , T = 0

where (V, T) = A(ss t) and
s t is of the form "v ---- CALL re(v1,... ,v~)"

otherwise

F i g u r e 7: F~quation for the E n t r y P o i n t o f a M e t h o d m for t h e Full l n t e r p r o c e d u r a l A n a l y s i s

• Ca l l e r On ly : The Analysis described in Section 3.5,
which uses information about the contexts in which
the method is invoked. Speciti~dly, the analysis deter-
mines if the receiver of the analyzed method is always
the most recently allocated object and, if so, exploits
this fact in the analysis of the method.

• Full I n t e r p r o c e d u r a l : The analysis described in Sec-
tion 3.6, which uses both information about the types
of objects allocated in invoked methods and the con-
texts in which the analyzed method is invoke~

The Caller Only and Full Interprocedural analyses view dy-
namically dispatched calls as -~ANALYZABLE. The transfer
functions for these call sites conservatively set the mudy-
sis information to (~,~). As explained below in Section 4.4,
including the allocation information from these call sites sig-
n i ~ n t l y increases the analysis times but provides no corre-
sponding increase in the number of eliminated write barriers.

For each application and e a ~ of the analyses, we used the
MIT Flex compiler to generate two executable•: an instru-
mented executable that counts the number of executed write
barriers, and an uninstrumented executable without these
counts. For all versions except the Baseline veffi~ion, the com-
piler uses the analysis results to eliminate unnecess~y write
barriers. We then ran these executable• on a 900MHz Intel
Pentium-III CPU with 512MB of memory running ~ t
Linux 6.2. We used the default input parameters for the
Java version of the Olden benchmark set for each applica-
tion (given in ~ b l e 13).

4_2 El iminated Write Barriers
Figure 8 presents the percente4~e of write barriers that the
~ t analyses eliminated. There is a bar for each ver-
sion of e a ~ application; this bar plots (1 - W / W s) x 100%
where W is the number of write barriers dynamically exe-
cuted in the corresponding version of program and Ws is
the number of write barriess executed in the Baseline ver-
sion of the program. For bh, health, perimeter, and treeadd,
the Full Interprocedural analysis eliminated over 80~ of the
write barriers. I t eliminated less than 20~ only for bisort
and em3d. Note the synergistic interaction tha t occurs when
exploiting information from both the called methods and
the calling context. For all applications except health, the
Caller Only and Callee Only versions of the analysis are able
to eliminate very few write barriers. But when combined,
as in the Full Interptocedural analysis, in many cases the
analysis is able to eliminate the vast m~jority of the write
barriers.

To evaluate the optimality of our analysis, we used the MIT
Flex compiler system to produce a version of e s ~ appli-

F i g u r e 8: P e r c e n t a g e D e c r e a s e in W r i t e B a r r i e r s Ex -
e c u t e d

cation in which each write instruction is instrumented to
determine if, during the current execution of the program,
that write instruction ever creates a reference from an older
object to a younger object. If the instruction ev~ creates
such a reference, the write barrier is definitely necessary, and
eA~,ot be removed by any age-baaed algorithm whose goal
is to eliminate write barriers Lssociated with instructions
that always create references from younger objects to older
objects. There are two possibilities if the store instruction
never creates a reference from an older object to a younger
object: 1) Regardless of the input, the store instruction will
never ere~te a reference from an older object to a younger
object. In this caae, the write barrier can be statically re-
moved. 2) Even though the store instruction did not create
a reference from an older object to a younger object in the
current execution, it may do so in other executions for other
inputs. In this case, the write barrier cannot be statically
removed.

Figure 9 presents the results of these experiments. We
present one bar for each application and divide e~.h bar
into three categories:

• U n r e n t o v a b l e W r i t e B a r r i e r s : The percentage of
executed write barriers from instructions tha t create a
reference from an older object to a younger object.

• R e m o v e d W r i t e Ba r r i e rg : The percentage of exe-
cuted write barriers tha t the Full Interprocodural anal-
ysis eliminates.

• P o t e n t i a l l y l ~ m o v a b l e : The rest of the write barri-
ers, i .e, the percentage of executed write barriers that
the Full Interprocedural aa3Alysis failed to eliminate,
but are from instructions tha t nev~ create a reference

KCM S I G P L A N Notices 38 V. 37(4) April 2002

[mUnmrnovsble | l : b m o w d r4Pmsrdjdy RsmmsblsJ [Ealnlmprocsduml I I Csllee Only r~Callsr Only DFull Interpromdural[

. 1.00 :i ... i,;

o.T . o . . ::i ii ;

- ' N I , , i 11
o.~ ii, i •

0A ! ~ 0.~ i; :i:: i

i o.~ i ii i o.1 i ~. i
o. o.o . O.gl I ~ - ~ ~ I : . - I I ~ t : : , . ~ . . ~ , ~..:~::,

Figure 9: Write Barrier Characterization

f~om an older object to a younger object when run on
our input set.

These results show that for all but two of our applications,
our ana]ysis is almost optima] in the sense that it managed
to eliminate almost all of the write h e ~ e r s that can be elim-
inated by any age-based write barrier elimination scheme.

4.3 Execution Times
We ran each version of each application (without instrumen-
tation) four times, measuring the execution time of each
run. The times were reproducible; see Figure 15 for the
raw execu~.ion time data and the standard deviations. Fig-
ure 10 presents the mean execution time for each version of
each application, with this execution time normalized to the
mean execution time of the Baseline version. In general, the
benefits are rather modest, with the optimization producing
overall perf~mance improvements of up to 7~. Six of the
applications obtain no significant benefit from the optimiza-
tion, even though the analysis managed to remove the vast
majority of the write barriers in some of these applications.

Figure 11 presents the u~te ba~,ier densit/e8 for the differ-
ent versions of the d i f~en t applications. The write barrier
density is simply the number of write barriers executed per
second, i.e., the number of executed write baaTiers divided by
the e~Acution time of the program. These numbers clearly
show that to obtain s i g n e t benefits from write barrier
elimination, two things must occur: 1) The Baseline version
of the application must have a high write barrier density, and
2) The analysis must eliminate most of the write barriers.

4,4 Analysis Times
Figure 12 presents the ana]ysis times for the ditfi~ent ap-
plications and ana]yses. We include the Full Dynamic In-
terprocedural analysis in this table - - this version of the
analysis includes ca]lee allocated type information for call
sites that (bef~use of dyn~mic dispatch) have multiple po-
tentially invoked methods. As the times indicate, including
the dynamically dispatched call sites significantly increases
the analysis times. Including these sites does not signifi-
cantly improve the ability of the compiler to eliminate write
barriers, however, since the Full Interprocedura] analysis is

F igu re 10: N o r m a l i z e d E x e c u t i o n T i m e s for Bench-
m a r k P r o K r a m s

Benchmark

bh
bmort
m u ~
health

mst
perimeter

power
treendd
voronoi

Write Barrier Density
(write barriers/s)

187537
4769518

773375
624960

1031059
2053484

3286
955755
815118

Figure 11: Wr i t e B a r r i e r Dmudt ies o f the Base l ine
Vers ion o f t he B e n c h m a r k P r o g r a m s

already nearly optimal for seven out of nine of our bench-
mark pro~arns.

4 3 Discussion
The experimented results show that, for many of our bench-
m~rk program% our analysis is able to remove a substantial
number of the write barriers. The performance improvement
from removing these write burrie~ depends on the inhes~nt
write bamer density of the application - - the larger the
write barrier density, the larger the performemce improve-
ment. While the performance impact of the optimization
will clearly vary based on the performance characteristics
of the particular execution platform, the optimization pro-
duces modest performance incre~es on our platform.

By instrumenting the application to find store instructions
that ~eate a reference from an older object to a younger
object, we are able to obtain a conservative upper bound
for the number of write barriers that any age-based write
bamer elimination a]gorithm would he able to eliminate.
Our results show that in a]l but two c~es, our a]gorithm
achieves this upper bound.

We anticipate that future analyses and transformations will
focus on changing the object allocation order to expose add]=
tional opportunities to eliminate write barriers. In generai~
this ma~ be a non-trivia] task to automate, since it may in-
volve hoisting allocations up soveral levels in the call Ipr~ph

ACM S I G P L A N Notices 39 V. 37(4) April 2002

Benchmark
bh

bisort
em3d
health

met
perimeter

power
treeadd

tsp
voronoi

Intraprocedural
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02

Callee Only

Analysis Time (,)

14
13
13
13
13
13
14
13
13
14

Full
Caller Only Interprocedural

139
142
231
194
187
202
209
216
149
253

214
169
240
218
163
141
216
155
255
186

Full Dyn~m;c
Interprocedured

988
955

1051
945
869
911
943
833
920
963

F i g u r e 12: A n a l y s i s T i m e s for D i f f e r en t A n a l y s i s V e r s i o n s

and even restructuring the applice~iou to change the alloca-
tion strategy for an entire data structure.

S. RELATED WORK
There is a vast body of literature on different approaches to
write barriers for generational garbage collection. Compar-
isons of some of these techniques can be found in [19, 12, 13].
Several researchers have investigated implementation tech-
niques for efficient write barriers [7, 10, 11]; the goal is to
reduce the write barrier overhead. We view our techniques
ea orthogonal and complementary: the goal of our analyses
is not to reduce the time required to execute a write barrier,
but to find superfluous write barriers and simply remove
them from the program. To the best of oar knowledge, our
a]gorithm~ ~re the first to use program analysis to remove
these unnecessary write barriers.

6. CONCLUSION
Write barrie~ overhead has traditionally been an unavoid-
able price tha t one pays to use 8enea-ation~l gaxbage collec-
tion. But a~ the results in this paper show, it is possible to
develop a relatively simple interprocedural algorithm that
can, in many cases, eliminate most of the write barriers in
the progress. The key ideas axe to use an intraprocedural
must points-to analysis to find variables that point t o the
most recently allocated object, then extend the analysis with
information about the types of objects allocated in invoked
methods and information about the must points-to relation-
ships in calling contexts. Incorporating these two kinds of
infurmation produces an algorithm tha t can often effectively
eliminate virtuedly all of the unnecessary write barriers.

7. ACKNOWLEDGEMENTS
C. Scott Ananias implemented the Flex compiler infre.~truc-
ture on which the -n~lysis w'~ implemented. Many the-ks
to Alexandru SLIcianu for his help in formalizing the aa~aly-
Eies.

8. REFERENCES
[1] Andrew W. Appel. Simple generational collection and fast

allocation. S o , are Pmcficz ~ B~-perien~ 1999.

[2] Josh Barnes and Pier Hut. A hierarchical O(N log N) force
calculntion algorithm. Nature, 1986.

[3] Jon Louis Bentley. A parallel algorithm for constructing
minimum spanning trees. In Journal a I A|garithms, 1980.

B e n c b , ~ k
bh

bisort
em3d
health

met
perimster

power
treeadd
voronoi

Input P~rameters Used
4096 bodies, 10 time steps

250000 numbers
2000 nodes, out-degree 100

5 levels, 500 time steps
1024 vertices

16 levels
10000 customers

20 levels
20000 points

F i g u r e 13: I n p u t P a r a m e t e r s U s e d on t he J a v a Ver-
s ion o f the O l d e n B e n c h m a r k s

[4] Gianfranco Bilardi and Alex~ndru Nicolsu. Adaptive
bitonic sorting: An optimal parallel slgorithm for
shared-memory machines. BIA~f Journal on Computing,
18(2):216-228, 1989.

[5] Brendon Cahoon and Kathrya S. McKinley. Data flow
analysis for software prefetching linked data structures in
Java. In Proceedings oi the lOth International Ca~erenve
on Parallel Arr.hitecfures =nd Compilation Techniques,
2001.

[6] Martin C. Carlisle and Anne Rogers. Software caching and
computation migration in Olden. In Proceedings of the 5fh
A C M $IGPLAIV Symposium on Principles and PruclSces
of Parallel Programming, 1995.

[7] Craig Chambers. The Design and Implementation e l the
SeJf Compiler, an Optimizing Compiler for Object-Oriented
Lan~mages. PhD thesis, Stanford University, 1992.

[8] D. Cullex, A. Dussean, S. Goldstein, A. Kriehnamurthy,
S. Lumetta~ T. yon Eicken, and K. Yelick. Parallel
programming in Split-C. In Prm3u~inos o] the A C M / I E E E
,.quporc~mputing Conference, 1993.

[9] L. Guibas and J. Stolfl. General subdivisions and Voronoi
diagrams. A C M Tranaac4ions on Oraphics, 1985.

[10] Ure H61zle. A fast write barrier for generational garbage
collectors. In OOPSLA '95 Garage Colle.c|ion Workshop,
1993.

[11] Antony L. Hosking and Richard L. Hudson. ELemembered
sets can also play cards. In OOPSI, A "95 Garbage
Collection Workshop, 1993.

[12] Antony L. Hoskiog, J. El iot B. Moss, and Darko Stefanovi~.
A comparative performance evaluation of write barriers
implementations. In Prm:eedings of the 6th Annual
Conference on Objecf-Oriented Pragmmming .qg~ma,
Languages and App|i~tiorts, 1992.

A C M S I G P L A N Notices 40 V. 37(4) Apri l 2002

Benchmark
bh

bisart
em3d
health

mst
perimeter

power
treeadd
voronoi

Benchmark
bh

bLsort
em3d
health

rest
perimeter

power
treeadd
voronoi

Baseline

Number of Times Write Barrier Executed

8589477
3911959

836173
11971243
6544130
3170579

23556
2097309
8426852

Intraprocedural
8589477
3911959

836173
11971243

5373698
3170579

23556
2097309
8426852

Callee OnJy
8589477
3911959

836173
11971243

5373698
3170579

23556
2097309
8426852

Caller Only
8589477
3911959

836173
2105955
5373698
3170579

23556
2087309
8426852

Full
Interprocedural

1047474
3649763

820103
457489

2229964
453024

13504
106

6266806

Figu re 14: D 3 m - m ; c W r i t e B a r r i e r C o u n t s

Average Execution Time (s) -i- Standard Deviation (s)

45.8
0.820
1.081
19.16

6.35
1.54

7.169
2.19

10.34

Baseline
-t-

-i-

Intraprocedural
0.3 45.6
0.007 0.821
0.005 1.078
0.02 19.09
0.01 6.32
0.01 1.54
0.006 7.14
0.02 2.182
0.01 10.316

-4- 0.2 45.42
-4- 0.003 0.818
::l:: 0.006 1.076
"4" 0.04 19,06
"4" 0.05 6.28
-4- 0.01 1.539
-4- 0.01 7.137
-4- 0.002 2.179
"4- 0.006 10.280

C~lee Only
4-
4-
::i:
.4-
4-

-4-
.4-
4-

Caller Only
0.03 45.43 -4-
0.001 0.819 ::t::
0.003 1.074 -1-
0.02 18.39 .4-
0.02 6.25 ~"
0.009 1.5336 -4-
0.009 7.140 -l-
0.002 2.177 -4-
0.004 10.299 "4-

0.02
0-001
0.002
0.04
0.01
0.0005
0.003
0.002
0.007

1~11
Interprocedexal

45.13 + 0.08
0.823 -t- 0.003
1.074 + 0.004
18.30 -~ 0.02
6.10 d: 0.02
1.43 -4- 0.01

7.220 :t: 0.006
2.079 -4- 0.002

10.197 ::1: 0.00,5

F i g u r e 16: A v e r a g e E x e c u t i o n T i m e s o f B e n c h m - - k P r o g r a m s

[13] R/chaxd Jones and RAfael Ling. Oarbsge Col]~4ion
Algorithms for Aurora-tic Dynamic Memory Management.
John Wiley & Sons, 1996.

[14] PAchazd M. Karp. Probabilistic analysis of partitioning
algorithms for the traveling-salesman problem in the plane.
Mathematics of Opemt/ona Resmrch, 1977.

[15] G. Lomow, J. Cleary, B. Unger, and D. West. A
performance study of Time Warp. In Prtx~edinga o~ the
BCS Muiticonferenc~ on D/st'r/buted Simulation, pages
50-55, San Diego, California, 1988.

[16] Steve Lumetta, Liam Murphy, Xianye Li, David C. Culler,
and Ismail S. Khalil. Deceatrslized optimal power pricing:
the development of a paraJlel program. Proceedings ot the
A CM/18EE Super~mpu|ing Conyeren~, 1993.

[17] Hanan Samet. Computing perimeters of regions in images
represented by quadtrees. IEBE '!3"anMctions on Pattern
Anolysis -rid M-chine lntelligenve, 1981.

[18] David M. Ungor. Generational scLvenging: A
non-disruptive high performance storage reclamation
algorithm. In A CM SIGSOFT/8IGPr.AN Practical
Progr-mming Bnu/ronments Conf~ren~,., 1984.

[19] Benjamin Zorn. Barrier methods for garbage collection.
Technical Report CU-CS-494-90, 1990.

ACM S I G P L A N Notices 41 V. 37(4) April 2002

