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ABSTRACT 
We present a set of stat ic analyses for removing write barri-  
ers in programs tha t  use generational garbage collection. To 
our knowledge, these are the first analyses for this purpose. 
Our lntrQprocedural analysis UseS a flow-sensitive pointer 
analysis to locate variables tha t  must  point to the  most  re- 
cently allocated object,  then eliminates write barriers on 
stores to objects accessed via one of these variables. The 
(Tallee ~pe  Eztenaion incorporates information about  the 
types  of objects allocated in invoked methods,  while the 
Caller Con~az~ Ez~ension incorporates information about  
the most  recently allocated object  at call sites tha t  invoke 
the currently analyzed method.  Results from our imple- 
mented system show tha t  our l;~dl lnterprocedured analy- 
sis, which incorporates both extensions, can eliminate the 
major i ty  of the write barriers in most  of the  programs in 
our benchmark  set, producing modest  performance improve- 
ments  of up to  7% of the  overall execution time. Moreover, 
by dynamically instrumenting the executable, we are able to  
show tha t  for all bu t  two of our nine benchmark programs, 
our analysis is close to opt imal  in the sense tha t  it eliminates 
the write barriers for almost all store instructions observed 
not to ~ e a t e  a reference from an older object to a younger 
object. 

Keywords 
Program analysis~ pointer ~n~lysis, generational garbage c o l  
lection, write barriers 

1. INTRODUCTION 
Generational garbage collectors have become the  memory  
management  alternative of choice for many  safe languages. 
The  basic idea behind generational collection is to segregate 
objects into different generations based on their age. Gen- 
erations containing recently allocated objects are typically 
collected more frequently than  older generations; as young 
objects age by  surviving collections, the collector promotes 
them into older generations. Generational collectors there- 
fore work well for programs tha t  allocate m a r y  short-lived 
objects and some long-lived objects - -  promoting long-lived 
objects into older generations enables the garbage collector 
to quickly scan the objects in younger generations. 

Before it scans a generation, the collector must  locate all ref- 
ereness into t ha t  generation from older generations. Wr/te 
bavr/ers are the s tandard  way to  locate these references - -  at  

"This  research was suppor ted  by NSF Grant  CCR00-73513. 

every instruction tha t  stores a heap reference into an object,  
the compiler inserts code t ha t  updates  an interganerational 
reference da ta  structure. This  da ta  s t ructure  enables the 
garbage collector to find all ref~ences f rom objects in older 
generations to objects in younger generations ~ d  use these 
references as roots during the  collections of younger gen- 
erations. The write barrier overhead haq tradit ionally been 
accepted as par t  of the  cost of using a generational collector. 

This paper  presents a set of now program analyses tha t  en- 
ables the compiler to statically eliminate write barriers for 
instructions tha t  never ~reate a reference from an object in 
an older generation to an object  in a younger generation. 
The basic idea is to use pointer  ~nalysis to locate store in- 
structions t ha t  always write the most  recently allocated ob- 
ject. Because this object  is the  youngest  object,  such a store 
instruction will never create a reference f rom an older object 
to a younger object.  The  write barrier for this instruction is 
therefore superfluous and the  t ransformat ion eliminates it. l 
We have implemented several analyses t ha t  use this basic 
approach to write barrier elimination: 

• I n t r a p r o c e d u r a l  A n a l y s i s :  This  m=alysis analyzes 
each method  separately from all other  methods.  I t  
uses a flow-sensitive, intraprocedural  pointer analysis 
to find variables tha t  must  refer to the most  recently 
allocated object.  At me thod  entry, the  analysis con- 
servatively assumes tha t  no variable points to the most  
recently allocated object.  Alter  each method  invocL- 
t ion site, the analysis also conservatively u s u m e s  tha t  
no variable refers to the  most  recently allocated object. 

• Ca l ] ee  T y p e  E x t e n a l o n :  This  extension augments  
the  Intraprocedural  analysis w/th information from in- 
voked methods.  I t  finds variables tha t  refer to the  ob- 
ject  most  recently allocated within the currently an- 
alyzed method  (the method-youngest  object).  I t  also 
t racks the types  of  objects allocated by ear.h invoked 
method.  For each p rogram point,  it extracts  a pair 
(V, T) ,  where V is the set of variables t ha t  refer to the 
method-youngest  object  and T is a set of  the  types of 
objects potentially allocated by methods invoked since 

£This analysis agsumes the mos t  recently allocated object is 
always allocated in the  youngest  generation. In some cases 
it may be desirable to allocate large objects in older gener- 
ations. A straightforward extension o f  our analysis would 
etaticaliy identify objects t ha t  might  be allocated in older 
generations and suppress write barrier  elimination for stores 
tha t  write these objects. 
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the method-youngest object was allocated. If a store 
instruction writes a reference to an object o of type C 
into the method-youngest object, and C is not a super- 
type of any type in T, the transformation can elimi- 
nate the write barrier - -  the method-youngest object 
is younger than the object o. 

Cal ler  C o n t e x t  E x t e n s i o n :  This extension aug- 
ments the Intraprocedural analysis with information 
about the points-to information at call sites that may 
invoke the currently analyzed method. If the receiver 
object of the currently eaxalyzed method is the most 
recently allocated object at all possible call sites, the 
algorithm can assume that  the t h i s  variable refers to 
the most recently allocated object at the entry point 
of the currently analyzed method. 

Full l n t e r p r o c e d u r a l  This analysis combines the 
Calico Type Extension and the Caller Context Ex- 
tension to obtain an analysis that  uses both type in- 
formation fzom calicos and points-to information fzom 
callers. 

Our experimental results show that, for our set of bench- 
mark programs, the Full Interprocedural analysis is often 
able to eliminate a substantial number of write barriers, pro- 
ducing modest overall performance improvements of up to 
a 7~  reduction in the total execution time. Moreov~, by 
instrumenting the benchmexks to dynamically observe the 
age of the source andtarget  objects at ear.~ store instruction, 
we are able to show that  in all but two of our nine bench- 
marks, the analysis is able to eliminate the write barriers 
at virtually a/l of the store instructions that do not create 
a reference groin an older object to a younger object dur- 
ing the execution on the default input f ~ m  the benehmezk 
suite. In other words, the analysis is basically optimal for 
these benchmarks. Finally, this optimality xequkes informa- 
tion from both the calling context and the called methods. 
Neither the Calico Type Extension nor the Caller Context 
Extension by itself is able to eliminate a significant number 
of write barriers. 

This paper provides the following contributions: 

• W r i t e  B a r r i e r  R e m o v a l :  It  identifies write barrier 
removal as an effective means of improving the per- 
formance of programs that  use generational garbage 
collection. 

• Ana lys i s  A l g o r i t h m s :  It presents several new static 
analysis algorithms that enable the compiler to auto- 
matically remove unnecessary write barriers. To the 
best of our knowledge, these are the first algorithms 
to use program analysis to eliminate write barriers. 

• E x p e r i m e n t a l  Resu l t s :  It presents a complete set of 
experimental results that  characterize effi~ivenses of 
the analyses on a set of benchmark programs. These 
results show that  the Full Interprocedural analysis is 
able to remove the majority of the write barriers for 
most of the programs in our bene hrnexk suite, produc- 
ing modest performance benefits of up to a 7~  reduc- 
tion in the total execution time. 

c l a s s  T r e e N o d e  ( 

TreaNode l e f t  ; 
TreeNode r i g h t ;  
Intege~ depth; 
s t a t i c  publ ic  vo:Ld mJJs(Stri~q~[] mrg) 

bu i l  dTres (10) ; 
} 
vo£d l ~ k n e p t h ( i n t  d) 

d e p t h . ,  new Tategex(d) ;  
} 
void lJJLkTree(TraeNode I ,  TreeNode r ,  

I: l e f t  ffi 1; 
link.Depth (d) ; 

2: r i g h t  m r ;  
} 
s t a t i c  ~reeNode b u i l d T r e e ( i n t  d) 

i f  (d <ffi O) xetux-n n u l l :  
TreeNede 1 ffi bu$ ldTree (d - l ) ;  
TreeNode r = bui ldTxee(d-1) :  
TreeNoda t ffi nee TreeNoda(): 
t . l ~ a k T r e e ( l ,  r .  d) ;  
r e t u r n  t ;  

} 
} 

xnt d) ( 

F i g u r e  1: B i n a r y  Tree  E x a m p l e  

The remainder of this paper is structured as follows. Sec- 
tion 2 presents an example that  illustrates how the algorithm 
works and how it can be used to remove unnecessary write 
barriers. Section 3 presents the analysis algorithms. We 
discuss experimental results in Section 4, related work in 
Section 5, and conclude in Section 6. 

2. AN EXAMPLE 
Figure I presents a binary tree construction example. In 
addition to the l e f t  and r i g h t  fields, which implement 
the tree structure, each tree node also has a depth field 
that  refers to an I n t e g e r  object containing the depth of 
the subtree rooted at that  node. In this e~mple ,  the l a i n  
method invokes the bui ldTrae method, which calls itself 
recursively to create the left and right subtrese before creat- 
ing the root TxeeIode. The 14-kTres method links the left 
and right subtrees into the the current node, and invokes 
the 14-knepth method to allocate the I a t e p r  object that  
holds the depth and link this new object into the tree. 

We focus on the two store instructions generated from lines 
1 and 2 in Figure 1; these store instructions link the left and 
right subtrees into the receiver of the l inkTree method. In 
the absence of any information about the relative ages of 
the three objects involved (the left tree node, the right tree 
node, and the receiver), the implementation must consorvL- 
tively generate write barriers at each store op~ation. But 
in this particular proKr~m , these write barriers are super- 
fluous: the receiver object is always younger than the left 
and right tree nodes. This program is an example of a com- 
mon pattern in many object-oriented program~ in which the 
program ~llocates s new object, then immediately invokes 
a method to initialize the object. Write barriers are oi~en 
unnecessary for these assignments because the object being 
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in i t ia l ized  is of ten t h e  mos t  r ecen t ly  a l loca ted  objec t .  ~ 

In our  example ,  t h e  analys is  al lows t h e  compi le r  to  omi t  
t he  unnecessa ry  wr i t e  bar r ie r s  as follows. T h e  analys is  f irst  
de t e rmines  t h a t ,  a t  all call s i tes  t h a t  invoke the  l i n k T r e e  
m e t h o d ,  t h e  receiver  o b j e c t  of  lJ~akTree is t he  mos t  r ecen t ly  
a l loca ted  ob jec t .  I t  t h e n  ana lyzes  t h e  l i n k T r e e  m e t h o d  wi th  
th i s  in format ion .  Since no a l loca t ions  occur  be tween  the  en- 
t r y  po in t  of  t h e  l £ n k T r e e  m e t h o d  a n d  s tore  ins t ruc t ion  a t  
l ine 1, t h e  receiver  o b j e c t  r e m a i n s  t h e  mos t  r ecen t ly  allo- 
c a t e d  ob jec t ,  so t he  wr i t e  ba r r i e r  a t  th i s  s to re  in s t ruc t ion  
c~n be  safely r emoved .  

In  be tween  l ines 1 a n d  2, t h e  l i a k l ~ e e  m e t h o d  invokes t h e  
14=~nep th  m e t h o d ,  which  a l loca tes  a new I n t e g e r  o b j e c t  
to  ho ld  t h e  dep th .  A l t e r  t h e  cal l  to  l t - ~ n e p t h ,  t h e  receiver  
ob jec t  is no longer  t h e  mos t  r ecen t ly  a l loca ted  ob jec t .  B u t  
du r ing  t h e  ana lys i s  of  t h e  l i n k T r e e  m e t h o d ,  t h e  a lgo r i t hm 
t r acks  t h e  t y p e s  of  t h e  ob j ec t s  t h a t  each invoked  m e t h o d  
m a y  create .  A t  l ine 2, t h e  ana lys i s  records  t h e  fac t  t h a t  
t he  rece iver  r e fe r red  to  t h e  mos t  r ecen t ly  a l l oca t ed  ob jec t  
when  t h e  l l a k T r a e  m e t h o d  was invoked,  t h a t  t h e  l ~ - k T r e e  
m e t h o d  i tself  has  a l l oca t ed  no new ob jec t s  so far ,  a n d  t h a t  
t he  l i ~ n e p t h  m e t h o d  ca l led  b y  t h e  l i n k T r e e  m e t h o d  allo- 
ca tes  only  Z n t e g e r  ob jec t s .  T h e  s to re  in s t ruc t ion  from l ine 
2 crea tes  a reference f rom t h e  rece iver  ob j ec t  t o  a TreeNede  
objec t .  Because  TreeNode is n o t  a superclaa9 of  I n t e g e r ,  
t h e  re fe r red  TreoNode o b j e c t  m u s t  have ex i s t ed  when  the  
14wbTraa m e t h o d  s t a r t e d  i t s  execut ion .  Because  t h e  re- 
ceiver  was t h e  mos t  r ecen t ly  a l l oca t ed  o b j e c t  a t  t h a t  po in t ,  
t h e  s to re  in s t ruc t ion  a t  l ine 2 c rea tes  a reference  to  an  ob jec t  
t h a t  is a t  leas t  as o ld  as  t h e  receiver.  T h e  wr i t e  ba r r i e r  a t  
l ine 2 is the re fore  super f luous  a n d  can  b e  safely removed .  

3. THE ANALYSIS 
O u r  analys is  has  t h e  following s t ruc tu re :  i t  consis ts  of  
a p u r e l y  i n t r a p r o c e d u r a l  f ramework ,  a n d  two in te rproce-  
d u r a l  ex tens ions .  T h e  f i rs t  ex tens ion ,  which  we call t h e  
Cel los  T y p e  Ex tens ion ,  i nco rpora t e s  in fo rma t ion  a b o u t  
ca l led  m e t h o d s .  T h e  second  ex tens ion ,  which  we call t h e  
Cal ler  C o n t e x t  Ex tens ion ,  i nco rpo ra t e s  i n fo rma t ion  a b o u t  
t h e  cal l ing con tex t .  W i t h  t h e s e  two ex tens ions ,  which  can 
be  app l i ed  s e p a r a t e l y  or  in combina t ion ,  we have a set  of  
four  analyses ,  which  are  given in r ~ b l e  2. 

T h e  r -m~inde~  of  th i s  sec t ion  is s t r u c t u r e d  as follows. W e  
p resen t  t h e  ana lys i s  f ea tu res  in Sect ion  3.1 and  t h e  p r o g r a m  
r ep re sen t a t i on  in Sec t ion  3.2. In  Sect ion  3.3 we p resen t  t h e  
i n t r a p r o c e d u r a l  analysis .  W e  p resen t  t h e  Cal lee  On ly  ana ly -  
sis in Section'  3.4, and  the  Cal le r  On ly  ana lys i s  in Sect ion 3.5. 
In  Sec t ion  3.6, we p re sen t  t h e  Ful l  i n t e r p r o c e d u r a l  analysis .  
F ina l ly ,  in  Sec t ion  3.7, we desc r ibe  how the  ana lys i s  r esu l t s  
a re  used  to  r emove  unnecessa ry  w r i t e  bar r ie rs .  

ZNote t h a t  even for t h e  c o m m o n  case of  cons t ruc to r s  t h a t  
in i t ia l ize  a r ecen t ly  a l l oca t ed  ob jec t ,  t h e  receiver  of  t h e  con- 
s t r u c t o r  m a y  no t  b e  t he  rrtoat r ecen t ly  a l loca ted  ob j ec t  
o b j e c t  a l loca t ion  a n d  in i t i a l i za t ion  a re  s e p a r a t e  ope ra t i ons  
in  J ava  by t ecode ,  a n d  o t h e r  o b j e c t  a l loca t ions  m a y  occur  
be tween  when  an  o b j e c t  is a l loca ted  and  when  it  is in i t ia l -  
ized. 

i n t r a p r o c e d u r a l  
Cal los  O n l y  
Caller Only 
Ful l  I n t e r p r o c e d u r a l  

W i t h  Cal lee  
T y p e  

E x t e n s i o n  
No 
Yes 
No  
Yes 

W i t h  Cal ler  
C o n t e x t  

E x t e n s i o n  
No 
No 
Yes 
Yes 

F i g u r e  2: T h e  F o u r  A J u d y s e n  

3.1 Analysis features 
Our  analyses  a re  f low-sensi t ive,  f o rw a rd  d~ t a~ ow ana lyses  
t h a t  c o m p u t e  m u s t  po in t s - t o  i n f o r m a t i o n  a t  each p r o g a m  
poin t .  T h e  prec i se  n a t u r e  of  t h e  c o m p u t e d  d a t a ~ e w  fitcts 
d e p e n d s  on t h e  analys is ,  i n  genera l ,  t h e  ana lyses  w ~ k  wi th  
a set  of  va r iab les  V t h a t  m u s t  p o i n t  t o  t he  ob j ec t  mos t  
r ecen t ly  a l l oca t ed  by  t h e  c u r r e n t  m e t h o d ,  a n d  op t i ona l l y  a 
set  of  t y p e s  T of  ob j e c t s  a l l oca t ed  b y  invoked  m e t h o d s .  

3~. Program Representation 
i n  t he  res t  of  t h i s  p a p e r ,  we use v, r e ,  v t ,  . . .  , t o  d e n o t e  
local var iables ,  m, me, ms, . . .  , t o  d e n o t e  m e t h o d s ,  a n d  C, C0, 
C1, • -.  , t o  deno t e  types .  T h e  s t a t e m e n t s  t h a t  a re  r e l evan t  to  
our  ana lyses  a re  as  follows: t h e  o b j e c t  a l loca t ion  s t a t e m e n t  
"v --- NEW C, ~ t h e  move  s t a t e m e n t  a r t  - -  v2," a n d  t h e  cal l  
s t a t e m e n t  av = CALL re(v1, . . .  ,vk) .  ~ in  t h e  given form, 
t h e  f irst  p a r a m e t e r  to  t h e  call ,  v t ,  p o i n t s  to  t h e  receiver  
o b j e c t  if  t h e  m e t h o d  m is an  i n s t ance  m e t h o d ,  s 

We as sume  t h a t  a p reced ing  s t age  of  t h e  compi le r  has  con- 
s t r u c t e d  ~ cont ro l  flow g r a p h  for each  m e t h o d  a n d  a call  
g r aph  for t h e  en t i r e  p r o g r a m .  W e  use e n t r y ,  t o  deno te  t h e  
e n t r y  p o i n t  of  t h e  m e t h o d  m. F o r  eAe.h s t a t e m e n t  s t  in t h e  
progra~n, PRED(Ilt) is t h e  set  of  p redecessors  of  a t  in t h e  
cont ro l  flow graph .  W e  use  o a t  to  deno t e  t he  p r o g r a m  p o i n t  
i m m e d i a t e l y  before  s t ,  a n d  e r e  to  deno t e  t h e  p r o g r a m  p o i n t  
i m m e d i a t e l y  aDAir e l .  For  eer~h such p r o g r a m  po in t  p (of  
t h e  fo rm o a t  or  a t e ) ,  we d e n o t e  A(p)  t o  b e  t h e  in fo rma t ion  
c o m p u t e d  b y  t h e  ana lys i s  for t h a t  p r o g r a m  poin t .  W e  use 
CALLERS(m) to  d e n o t e  t h e  set  of  cal l  s i tes  t h a t  m a y  invoke 
t h e  m e t h o d  m. 

3.3 The Intraprocedural Analysis 
T h e  s imples t  of  our  set  of  ana lyses  is t h e  i n t r a p r o c e d u r a l  
aamlysis. I t  is a f lew-sensi t ive ,  f o rw a rd  d a t ~  ana lys i s  t h a t  
genera tes ,  for  each  p r o g r a m  po in t ,  t h e  set  of  var iab les  t h a t  
m u s t  p o i n t  to  t he  m o s t  r e c e n t l y  a l l oca t ed  ob jec t ,  known as  
t h e  m.obje~ W e  call  a va r i ab l e  t h a t  po in t s  to  t h e  m.oSje~t 
an m-variable. 

T h e  p r o p e r t y  l a t t i ce  is 7~(Var) ( t he  powerse t  of  t h e  set  of  
var iab les  Vex) w i th  n o r m a l  set  inc lus ion  as  t h e  o rde r ing  re-  
la t ion,  where  Vat  is t h e  set  of  all  p r o g r a m  var iables .  T h e  
mee t  o p e r a t o r  used  to  c ombine  da ta f low fac t s  a t  control-lk~w 
merge  po in t s  is t h e  usua l  se t  in te r sec t ion  ope ra to r :  G ---- f3. 

F i g u r e  3 p re sen t s  t h e  t r ans f e r  func t ions  for t h e  analysis .  I n  
t h e  c u e  of  an  a l loca t ion  s t a t e m e n t  "v ---- N ~  C, n t he  new 
ob j ec t  d e a r l y  becomes  t h e  m o s t  r ecen t ly  a l l oca t ed  ob jec t .  

Sin Java ,  an  i n s t a n c e  m e t h o d  is t h e  s a m e  as  a non - s t a t i c  
m e t h o d .  
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s t  

v ----NEV C 

V l  ~ Vg 

v----CALL~(vt, . . .  ,vk) 
any other assignment to v 

other statements 

[ . t ](v)  
(v) 

V O { v s }  i f v s ~ V  
V\{vt} i f v , ~ V  

v \ {v) 
V 

F i g u r e  3: T r a n s f e r  F u n c t i o n s  for the  I n t r a p r o c e d u r a l  
Ana lys i s  

Since v is the only variable pointing to this newly-allocated 
object, the transfer function returns the singleton {v}. For 
a call statement "v = CALL m~(vl, . . .  ,v~), D the transfer 
function returns e, since in the absence of any interproce- 
dural information, the analysis must consm-vatively assume 
that the called method may allocate any number or type of 
objects. For a move s ta tment%t --- v~ ~ where the source of 
the move, v2, is an m-variable, the destination of the move, 
el, becomes an m-v, riable. The transfer function therefore 
returns the union of the current set of m-v~aria~les with the 
singleton ~v}. For a move statement where the source of the 
move is not an m-v~ariable, or fur any other type of ~sign- 
meat (i.e., a load from a field or a static field), the destina- 
tion of the move may not be an m-~ariable after the move. 
The transfer function therefore returns the current set of 
m-variables less the destination ~ i a b l e .  Other statements 
leave the set of m-~ar/ables unchanged. 

The analysis result satisfies the following equations: 

A(ost)  = { ~ { A ( s t ' - )  if e t  --_-- entry. 
] eZ ° E PKED(et)} otherwise 

= 

The first equation states tha t  the analysis result at the pro- 
gram point immediately before a t  is 0 if s t  is the entry 
point of the method; otherwise, the result is the meet of 
the analysis results for the program points im~,ediately aS- 
ter the predecessors of at.  As we want to compute the set 
of variables that  definitely point to the most recently allo- 
cated object, we use the meet operator (set intersection). 
The second equation states that  the analysis result at the 
program point immediately after s t  is obtained from apply- 
ing the transfe~ function for a t  to the analysis result at the 
program point immediately before st .  

The analysis starts with the set of m-vat/shies initialized 
to the empty set for the entry point of method and to the 
full set of variables Vex (the top element of our property 
lattice) for all the other program points, and uses an iter- 
ative algorithm to compute the greatest fixed point of the 
aforementioned equations under subset inclusion. 

3 .4  T h e  C a l l e e  O n l y  A n a l y s i s  
The Calles Type Extension builds upon the framework of 
the Intraprocedural analysis, and extends it by using in- 
formation about the types of objects allocated by invoked 
methods. 

This extension stems from the following observation. The 
Intraprocedural analysis loses all information at call sites be- 

cause it must conservatively assume that  the invoked method 
may allocate any number or type of objects. The Callee 
Type Extension allows us to retain information across a call 
by computing summary information about the types of the 
objects that  the invoked methods may allocate. 

To do so, the Callee Type Extension relaxes the notion of 
the m-object. In the Intraprocedural analysis, the m-object 
is simply the most recently allocated object. In the Callee 
Type Extension, the m-object is the object most recently al- 
located by any statement in the currently analyzed method. 
The analysis then computes, for each program point, a tu- 
pie (V,T)  containing a variable set V and a type set T. 
The variable set V contains the variables that  point to the 
m-object (the m-v,~riables), and the type set T contains the 
types of objects that  may have been allocated by methods 
invoked since the allocation of the m-ob3ect 

The property lattice is now 

z = r(var) x  ,(Types) 

where Vex is the set of all program variables and Types is the 
set of all types used by the program. The ordering relation 
on this lattice is 

(V1,T,) _E  (Vl C_ ^ 

Lad the corresponding meet operator is 

(VI ,Tt )  C] (V~ T~) ---- ( V I N V  2 , Ts UT~ ) 

The top element is T = (Var, ~). This lattice is in fact 
the cartesian product of the lattices (~(Var), C_, U, n, Var, 0) 
and (~P(Types), _~, n, U, 0, Types). These two lattices have 
different ordering relations because their elements have dif- 
forent meanings: V E P(Var) is must information, while 
T E ~(Types) is meg/information. 

Figure 4 presents the transfer functions for the Callee Only 
analysis. Except for call statements, the transfer functions 
treat the variable set component of the tuple in the same 
way as in the Intraproced~ral analysis. For call statements 
of unanalyzable methods (for e~mple ,  native methods), the 
transfer function produces the (very) conservative approxi- 
mation (0, ~). For other call statements, the transfer func- 
tion returns the variable set unch~ged ,  but adds to the type 
set the types of objects that  may be allocated during the call. 
Due to dynamic dispatch m the method invoked at s t  may be 
one of a set of methods, which we obtain from the call graph 
using the auxiliary function CALLEES(et). To dstermine the 
types of objects allocated by any particular method, we use 
another auxiliary function ALLOCATED_TYPES. The set of 
types that may be allocated during the call at s t  is simply 
the union of the result of the ALLOCATED_TYPES function 
applied to each component of the set CALLm~S(at). The 
only other tr~-~fer function that  modifies the type set is the 
allocation statement, which returns 0 as the second compo- 
nent of the tuple. 

The CALLEES function can be obtained directly from the 
program call graph, while the ALLOCATBD_TYPES function 
can be efficiently computed using a simple flow-insensitive 
analysis thLt determines the least fixed point for the equa- 
tion given in Figure 5. 

ACM S I G P L A N  Notices 35 V. 37(4) April 2002 



et [eq((V,T)) 
v = l ' ~  C 

V l  ~-~ V2 

v = C t L L a o ( v ~ ,  . . .  ,vh) 

any other assignment to v 
other statements 

({v}, e) 
(V t.J {v] }, T) ifva EV 
( V \ { v , } , T )  i f v a l ~ V  

(0,0) if -~ANALYZABLE(st) 
(V t, T*) otherwise 

where V '  = V \ { v }  
r~ = T [.J ( [.J ALLOCATED_TYPES(m)) 

=~CxL,-sm(.t) 
(v \ {v), T) 

(V,T)  

F i g u r e  4: T r a n s f e r  F u n c t t o n a  for  t h e  Ca l lee  O n l y  A n a l y s i s  

The analysis solves the dntal]c~ equations in Figure 4 using 
a standard work list algorithm. I t  starts with the entry point 
of the method initialized to (~, 0) and all other program 
points initialized to the top element (Var, 0). It computes 
the greatest fixed point of the equations as the solution. 

3-~ The Caller Only Analysis 
The Caller Context Extension stems from the observation 
that  the Intraprocedttral analysis has no information about 
the m-object at the entry point of the method. The Caller 
Context Extension augments this analysis to de t~mine  if 
the m-object is always the receiv~ of the currently analyzed 
method. If  so, it ~,Myzes the method with the ~2~ie variable 
as an element of the set of variables V tha t  must point to 
the m-object at the entry point of the method. 

With the Caller Context Extension, the property lattice, 
associated ordering relation, and meet operator axe the same 
as for the Intraprocedura/ analysis. Figure 6 presents the 
additional dataltvw equation that  defines the dataflow result 
at the entry point of esr.h method. The equation basically 
states that  if the receiver object of the method is the m- 
object at all call sites that  may invoke the method, then 
the t h i s  variable refers to the m-object at the start of the 
method. Note tha t  because class (static) methods have no 
receiver, V is always 0 at the start  of these methods. It is 
straightforward to extend this t reatment to handle call sites 
in which an m-object is passed as a parameter other than 
the receiver. 

Within strongiy-conneeted components of the call graph, the 
analysis uses a fixed point algorithm to compute the greatest 
fixed point of the combined interprocedttral and intraproce- 
dural equations. It  initializes the analysis with {th£s} at 
each method entry point, Vat at all other program points 
within the  strongiy-connected component, then iterates to 
a fixed point. Between strongly-connected components, the 
algorithm simply propagates the caller context information 
in a top-down fashion, with each strongly-connected com- 
ponent analyzed before any of the components tha t  contain 
methods that  it may invoke. 

3.6 The Full Interprocedural Analysis 
The Full Interprocodural aat~.lysis combines the Callee Type 
Extension and Caller Context Extension. The transfer func- 
tions are the same as for the Callee Only analysis, given in 
Table 4. Likewise, the property lattice, associated ordering 
relation and meet operator are the same as for the Callee 

Only ~nMysis. The analysis result at the entry point of the 
method, however, is subject to the equation given in Fig- 
ure 7. 

With  this extension, the analysis will recognize that  it can 
use ({ th in) ,0)  as the m~alysis result at the entry point 
entr~= of a method m if, at  all call sites that  may invoke 
m, the receiver object of the method is the m-obj~t and the 
type set is 0. Note tha t  if we expand our d ~ - i t i o n  of the 
safe method, we can additionally propagate type set infor- 
mation from the calling context into the called method. 

Like the algorithm from the Caller Only analysis, the al- 
gorithm for the Full Interprocedural analysis uses a fixed 
point algorithm within strongly-connected components and 
propagates caller context information in a top-down fashion 
between components. It  initializes the analysis aigorithm to 
compute the greatest fixed point of the data~ow equations. 

3.7 How to Use the Analysis Results 
It  is easy to see how the results of the Intraproceduxal anal- 
ysis can be used to remove unnecessary write barriers. Since 
an m-e~r/able must point to the most recently allocated ob- 
ject, the write barrier can be removed for any store to an 
object pointed to by an m.uariable, since the reference 
ated mu~t point from a younger object to an older one. The 
results of the Caller Only analysis are used in the same way. 

It  is less obvious how the analysis results are used when the 
Callee Type Extension is applied, since the results now in- 
dude  a type set in addition to the variable set. Consider 
a store of the form %] . f  = v~," and the analysis result 
(V, T) computed for the program point immediately before 
the store. If  vx E V, then vt must point to the m-objecf. 
Any object allocated more recently than the m-object must 
have type C such that  C E T.  If  the ac tu~ (i.e., dynamic) 
type of the object pointed to by v~ is not included in T, 
then the object tha t  vz points to must be older than the 
object that  vl points to. The write barrier associated with 
the store can therefore be removed if vl E V, and if the 
type of v2 is not an ancestor of any type in T. Note that  
va ~ T is not a sufficient condition since the static type of 
v2 may be different from its dynamic type. The analysis 
results are used in this way whenever the Ca/lee Type Ex- 
tension is applied (i.e., for both  the Callee Only and the Full 
Interproceduxal analyses). 
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ALLOCATI ,D_TYPBS(ta) = {cl'  = c" "9 o 
Bt l  E ! $~kmr'BtU(n"i) 

el:~ is a CALL 

F i ~ z r e  5: E q u a t i o n  for  t h e  ALLOCATED_TYPES F u n c t i o n  

f I t s . }  

A(•enerT I . )  - -  

( 

if m is an instance method and 
V s t  E CALLEI~(m), IVl E V 

where V = AC.et) and 
ot  is of the form ~v = CALL m(v l , . . .  ,vk)" 

otherwise 

F i g u r e  6: E q u a t i o n  for  t h e  E n t r y  P o i n t  o f  a M e t h o d  m for  t h e  Ca l l e r  O n l y  A n a l y s i s  

4. EXPERIMENTAL RESULTS 
We next present experimental results tha t  characterize the 
effectiveness of our optimization. In general, the Full In- 
terprocedural analysis is able to remove the majori ty of the 
write barriers for most of our applications. For applications 
that  execute many write barriers per second, this optimize~ 
tion can deliver modest peffurmance benefits of up to 7 ~  of 
the overall execution time. There is synergistic interaction 
between the  Callee Type Extension and the Caller Context 
Extension; in general, the anaiysis must use both extensions 
to remove a significant number of write barriers. 

4.1 Methodology 
We implemented all four of our write barrier elimination 
analyses in the MIT Flex compiler system, an ahead-of-time 
compiler for Java progr~m~ written in J a v ~  This system, 
including our implemented analyses, is available under the 
GNU GPL at  vmw.glex©.:tco~Lt.edu. The Flex runtime uses 
a copying gen~ational  collector with two generations, the 
nursery and the tenured generation. It  uses remembered 
sets to track pointers from the tenured generation into the 
nursery [18, 1]. Our remembered set implementation uses a 
statically allocated array to store the addresses of the cre- 
ated references. Ear~ write barrier therefore executes a store 
into the next free element of the array and increments the 
pointer to that  element. By manually tuning the size of the 
arre~v to the characteristics of our applications, we are able 
to eliminate the array overflow check tha t  would otherwise 
be necessary for this implementation. 4 

We present results for our analysis running on the Java ver- 
sion of the Olden Benchmarks [6, 5]. This benchmark set 
contains the following applications: 

• e m 3 d :  Models the propagation of electromagnetic 
waves through objects in three dimensions [8]. 

• hea l t h :  Simulates the health-care system in Colom- 
b ~  [15]. 

• res t :  Computes  the minimum spanning tree of & graph 
using Bentley's algorithm [3]. 

• p e r i m e t e r :  Computes the total  perimeter of a region 
in a binary image represented by a quadtrso [17]. 

• p o w e r :  Maximizes the  economic efficiency of a com- 
munity of p o w ~  consumers [16]. 

• i r e • a d d :  Sums the values of the nodes in a binary 
tree using a recursive depth-first traversal. 

• t s p :  Solves the traveling salesman problem [14]. 

• vo rono i :  Computes  a Voronoi diagram fur a random 
set of points [9]. 

We do not include results for t sp  because it uses a nonde- 
terministic, probabilistic algorithm, causing the number of 
write barriers executed to be vastly ~ n t  in e a ~  run of 
the same executable. In addition~ for three of the bench- 
marks (bh, power, and treeadd) we modified the bench- 
marks to construct the MathVector, Leaf,  and TreoNode 
data structures, respectively, in a bot tom-up instead of a 
top-down mA.uner. 

We present results for the  following compiler options: 

• bh :  An implementation of the  Barnse-Hut N-body 
solver [21. 

• b ioor t :  An implementation of bitonic sort [4]. 

4Our write barriers are therefore somewhat more efficient 
than  they would be in a general system designed to execute 
arbi trary programs with no a-priori information about the 
behavior of the program. 

Base l ine :  No optimization, all writes to the heap have 
associated write barriers. 

I n t r a p r o c e d u r a h  The  Intraprocedural  analysis de- 
scTibed in Section 3.3. 

Ca l l ee  On ly :  The  analysis dmoribed in Section 3.4, 
which uses information about the types of objects ai- 
located in invoked methods.  
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~{l:~.},e) 

t (e, e) 

if m is an instance method and 
V S t  E CALLERS(m), Vl E V , T  = 0 

where (V, T) = A(ss t )  and 
s t  is of the form "v ---- CALL re(v1,... ,v~)" 

otherwise 

F i g u r e  7: F~quation for  the  E n t r y  P o i n t  o f  a M e t h o d  m for t h e  Full  l n t e r p r o c e d u r a l  A n a l y s i s  

• Ca l l e r  On ly :  The Analysis described in Section 3.5, 
which uses information about the contexts in which 
the method is invoked. Speciti~dly, the analysis deter- 
mines if the receiver of the analyzed method is always 
the most recently allocated object and, if so, exploits 
this fact in the analysis of the method. 

• Full I n t e r p r o c e d u r a l :  The analysis described in Sec- 
tion 3.6, which uses both  information about the types 
of objects allocated in invoked methods and the con- 
texts in which the analyzed method is invoke~ 

The Caller Only and Full Interprocedural analyses view dy- 
namically dispatched calls as -~ANALYZABLE. The transfer 
functions for these call sites conservatively set the mudy- 
sis information to (~,~). As explained below in Section 4.4, 
including the allocation information from these call sites sig- 
n i ~ n t l y  increases the analysis times but provides no corre- 
sponding increase in the number of eliminated write barriers. 

For each application and e a ~  of the analyses, we used the 
MIT Flex compiler to generate two executable•: an instru- 
mented executable that  counts the number of executed write 
barriers, and an uninstrumented executable without these 
counts. For all versions except the Baseline veffi~ion, the com- 
piler uses the analysis results to eliminate unnecess~y write 
barriers. We then ran these executable• on a 900MHz Intel 
Pentium-III  CPU with 512MB of memory running ~ t  
Linux 6.2. We used the default input parameters for the 
Java version of the Olden benchmark set for each applica- 
tion (given in ~ b l e  13). 

4_2 El iminated Write  Barriers 
Figure 8 presents the percente4~e of write barriers that  the 
~ t  analyses eliminated. There is a bar for each ver- 
sion of e a ~  application; this bar plots (1 - W / W s )  x 100% 
where W is the number of write barriers dynamically exe- 
cuted in the corresponding version of program and Ws is 
the number of write barriess executed in the Baseline ver- 
sion of the program. For bh, health, perimeter, and treeadd, 
the Full Interprocedural analysis eliminated over 80~ of the 
write barriers. I t  eliminated less than 20~ only for bisort 
and em3d. Note the synergistic interaction tha t  occurs when 
exploiting information from both the called methods and 
the calling context. For all applications except health, the 
Caller Only and Callee Only versions of the analysis are able 
to eliminate very few write barriers. But  when combined, 
as in the Full Interptocedural analysis, in many cases the 
analysis is able to eliminate the vast m~jority of the write 
barriers. 

To evaluate the optimality of our analysis, we used the MIT 
Flex compiler system to produce a version of e s ~  appli- 

F i g u r e  8: P e r c e n t a g e  D e c r e a s e  in  W r i t e  B a r r i e r s  Ex -  
e c u t e d  

cation in which each write instruction is instrumented to 
determine if, during the current execution of the program, 
that  write instruction ever creates a reference from an older 
object to a younger object. If the instruction ev~  creates 
such a reference, the write barrier is definitely necessary, and 
eA~,ot be removed by any age-baaed algorithm whose goal 
is to eliminate write barriers Lssociated with instructions 
that  always create references from younger objects to older 
objects. There are two possibilities if the store instruction 
never creates a reference from an older object to a younger 
object: 1) Regardless of the  input, the store instruction will 
never ere~te a reference from an older object to a younger 
object. In this caae, the write barrier can be statically re- 
moved. 2) Even though the store instruction did not create 
a reference from an older object to a younger object in the 
current execution, it may do so in other executions for other 
inputs. In this case, the write barrier cannot be statically 
removed. 

Figure 9 presents the results of these experiments. We 
present one bar for each application and divide e~.h bar 
into three categories: 

• U n r e n t o v a b l e  W r i t e  B a r r i e r s :  The percentage of 
executed write barriers from instructions tha t  create a 
reference from an older object to a younger object. 

• R e m o v e d  W r i t e  Ba r r i e rg :  The percentage of exe- 
cuted write barriers tha t  the Full Interprocodural anal- 
ysis eliminates. 

• P o t e n t i a l l y  l ~ m o v a b l e :  The rest of the write barri- 
ers, i .e,  the percentage of executed write barriers that  
the Full Interprocedural aa3Alysis failed to eliminate, 
but  are from instructions tha t  nev~  create a reference 
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Figure 9: Write Barrier Characterization 

f~om an older object to a younger object when run on 
our input set. 

These results show that  for all but two of our applications, 
our ana]ysis is almost optima] in the sense that  it managed 
to eliminate almost all of the write h e ~ e r s  that  can be elim- 
inated by any age-based write barrier elimination scheme. 

4.3 Execution Times 
We ran each version of each application (without instrumen- 
tation) four times, measuring the execution time of each 
run. The times were reproducible; see Figure 15 for the 
raw execu~.ion time data and the standard deviations. Fig- 
ure 10 presents the mean execution time for each version of 
each application, with this execution time normalized to the 
mean execution time of the Baseline version. In general, the 
benefits are rather modest, with the optimization producing 
overall perf~mance improvements of up to 7~. Six of the 
applications obtain no significant benefit from the optimiza- 
tion, even though the analysis managed to remove the vast 
majority of the write barriers in some of these applications. 

Figure 11 presents the u~te  ba~,ier densit/e8 for the differ- 
ent versions of the d i f~en t  applications. The write barrier 
density is simply the number of write barriers executed per 
second, i.e., the number of executed write baaTiers divided by 
the e~Acution time of the program. These numbers clearly 
show that  to obtain s i g n e t  benefits from write barrier 
elimination, two things must occur: 1) The Baseline version 
of the application must have a high write barrier density, and 
2) The analysis must eliminate most of the write barriers. 

4,4 Analysis Times 
Figure 12 presents the ana]ysis times for the ditfi~ent ap- 
plications and ana]yses. We include the Full Dynamic In- 
terprocedural analysis in this table - -  this version of the 
analysis includes ca]lee allocated type information for call 
sites that  (bef~use of dyn~mic dispatch) have multiple po- 
tentially invoked methods. As the times indicate, including 
the dynamically dispatched call sites significantly increases 
the analysis times. Including these sites does not signifi- 
cantly improve the ability of the compiler to eliminate write 
barriers, however, since the Full Interprocedura] analysis is 

F igu re  10: N o r m a l i z e d  E x e c u t i o n  T i m e s  for Bench-  
m a r k  P r o K r a m s  

Benchmark 

bh 
bmort 
m u ~  
health 

mst 
perimeter 

power 
treendd 
voronoi 

Write Barrier Density 
(write barriers/s) 

187537 
4769518 

773375 
624960 

1031059 
2053484 

3286 
955755 
815118 

Figure  11: Wr i t e  B a r r i e r  Dmudt ies  o f  the  Base l ine  
Vers ion  o f  t he  B e n c h m a r k  P r o g r a m s  

already nearly optimal for seven out of nine of our bench- 
mark pro~arns. 

4 3  Discussion 
The experimented results show that, for many of our bench- 
m~rk program% our analysis is able to remove a substantial 
number of the write barriers. The performance improvement 
from removing these write burrie~ depends on the inhes~nt 
write bamer  density of the application - -  the larger the 
write barrier density, the larger the performemce improve- 
ment. While the performance impact of the optimization 
will clearly vary based on the performance characteristics 
of the particular execution platform, the optimization pro- 
duces modest performance incre~es on our platform. 

By instrumenting the application to find store instructions 
that ~eate  a reference from an older object to a younger 
object, we are able to obtain a conservative upper bound 
for the number of write barriers that  any age-based write 
bamer  elimination a]gorithm would he able to eliminate. 
Our results show that  in a]l but two c~es, our a]gorithm 
achieves this upper bound. 

We anticipate that future analyses and transformations will 
focus on changing the object allocation order to expose add]= 
tional opportunities to eliminate write barriers. In generai~ 
this ma~ be a non-trivia] task to automate, since it may in- 
volve hoisting allocations up soveral levels in the call Ipr~ph 
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Benchmark 
bh 

bisort 
em3d 
health 

met 
perimeter 

power 
treeadd 

tsp 
voronoi 

Intraprocedural 
0.02 
0.02 
0.02 
0.02 
0.02 
0.02 
0.02 
0.02 
0.02 
0.02 

Callee Only 

Analysis Time (,) 

14 
13 
13 
13 
13 
13 
14 
13 
13 
14 

Full 
Caller Only Interprocedural 

139 
142 
231 
194 
187 
202 
209 
216 
149 
253 

214 
169 
240 
218 
163 
141 
216 
155 
255 
186 

Full Dyn~m;c 
Interprocedured 

988 
955 

1051 
945 
869 
911 
943 
833 
920 
963 

F i g u r e  12: A n a l y s i s  T i m e s  for  D i f f e r en t  A n a l y s i s  V e r s i o n s  

and even restructuring the applice~iou to change the alloca- 
tion strategy for an entire data  structure. 

S. RELATED WORK 
There is a vast body of literature on different approaches to 
write barriers for generational garbage collection. Compar- 
isons of some of these techniques can be found in [19, 12, 13]. 
Several researchers have investigated implementation tech- 
niques for efficient write barriers [7, 10, 11]; the goal is to 
reduce the write barrier overhead. We view our techniques 
ea orthogonal and complementary: the goal of our analyses 
is not to reduce the time required to execute a write barrier, 
but  to find superfluous write barriers and simply remove 
them from the program. To the best of oar knowledge, our 
a]gorithm~ ~re the first to use program analysis to remove 
these unnecessary write barriers. 

6. CONCLUSION 
Write barrie~ overhead has traditionally been an unavoid- 
able price tha t  one pays to use 8enea-ation~l gaxbage collec- 
tion. But  a~ the results in this paper show, it is possible to 
develop a relatively simple interprocedural algorithm that  
can, in many cases, eliminate most of the write barriers in 
the progress. The key ideas axe to use an intraprocedural 
must points-to analysis to find variables that  point t o  the 
most recently allocated object, then extend the analysis with 
information about the types of objects allocated in invoked 
methods and information about the must points-to relation- 
ships in calling contexts. Incorporating these two kinds of 
infurmation produces an algorithm tha t  can often effectively 
eliminate virtuedly all of the unnecessary write barriers. 
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